Если 1 угол равен 2п/3, то он равен 120 градусов-это тупой угол ромба.Противолежащий ему также 120 градусов.Значит, 2 другие угла по 60. Получается,что меньшая диагональ делит ромб на 2 равносторонних треуг-ка и сторона ромба =меньшей диагонали d1. Радиус вписанной в ромб окружности равен d1*d2/4a=8корней из 3,а т.к. меньшая диагональ равна стороне ,то подставляем d1 вместо а и получаем,что d2=32 корня из 3. Рассмотрим прямоугольный треугольник,образованный половинами диагоналей и стороной ромба: по т.Пифагора находим сторону : (Корень из a^2-a^2/4)=(1/2)*16 корней из 3. Находим сторону а =32 и значит меньшая диагональ равна 32.
Есть пирамида АВСД, гда АВС - основание, ДО - высота пирамиды. Из вершины Д к стороне АВ проведем апофему ДЕ.
В равностороннем треугольнике АВС все высоты пересекаются в точке О. Рассмотрим прямоугольный треугольник АЕО: угол ОАЕ=60/2=30. ОЕ - катет, лежащий против угла 30 градусов, примем его за х, значит ОА=2ОЕ=2х
АЕ^2=ОA^2-ОE^2=(2х)^2-х^2=3х^2
но АЕ=АВ/2=1 значит 3х^2=1, х=ОЕ=1/корень из 3.
ОА=2х=2/корень из 3.
СЕ=ОС+ОЕ=ОА+ОЕ=3/корень из 3
Из прямоугольного треугольника ОДЕ: угол ОДЕ=180-ДОЕ-ОЕД=180-90-60=30.
ОЕ - катет, лежащий против угла 30 градусов. Значит ДЕ=2ОЕ=2/корень из 3
ОД^2=ДЕ^2-ОE^2=(2/корень из 3)^2-(1/корень из 3)^2 =1, ОД=1
Если 1 угол равен 2п/3, то он равен 120 градусов-это тупой угол ромба.Противолежащий ему также 120 градусов.Значит, 2 другие угла по 60.
Получается,что меньшая диагональ делит ромб на 2 равносторонних треуг-ка и сторона ромба =меньшей диагонали d1.
Радиус вписанной в ромб окружности равен d1*d2/4a=8корней из 3,а т.к. меньшая диагональ равна стороне ,то подставляем d1 вместо а и получаем,что d2=32 корня из 3.
Рассмотрим прямоугольный треугольник,образованный половинами диагоналей и стороной ромба: по т.Пифагора находим сторону :
(Корень из a^2-a^2/4)=(1/2)*16 корней из 3.
Находим сторону а =32 и значит меньшая диагональ равна 32.
Есть пирамида АВСД, гда АВС - основание, ДО - высота пирамиды. Из вершины Д к стороне АВ проведем апофему ДЕ.
В равностороннем треугольнике АВС все высоты пересекаются в точке О. Рассмотрим прямоугольный треугольник АЕО: угол ОАЕ=60/2=30. ОЕ - катет, лежащий против угла 30 градусов, примем его за х, значит ОА=2ОЕ=2х
АЕ^2=ОA^2-ОE^2=(2х)^2-х^2=3х^2
но АЕ=АВ/2=1
значит 3х^2=1, х=ОЕ=1/корень из 3.
ОА=2х=2/корень из 3.
СЕ=ОС+ОЕ=ОА+ОЕ=3/корень из 3
Из прямоугольного треугольника ОДЕ: угол ОДЕ=180-ДОЕ-ОЕД=180-90-60=30.
ОЕ - катет, лежащий против угла 30 градусов. Значит ДЕ=2ОЕ=2/корень из 3
ОД^2=ДЕ^2-ОE^2=(2/корень из 3)^2-(1/корень из 3)^2 =1, ОД=1
S=1/2*АВ*СЕ=1/2*2*3/корень из 3=3/корень из 3
V=1/3*S*h=1/3* 3/корень из 3*1=1/корень из 3