a) По правилу сложения векторов вектор CD = CE+ED. Вектор ED - средняя линия треугольника АВС и равен АС/2 = 3а/2, так как вектор СА = 3·СN = 3·a. Значит вектор CD = b+(3/2)·a.
Вектор МВ = СМ - MB = 2b - 2a = 2·(b-a).
Вектор MD = ME+ED; ME = CE-CM = b-2a. ED =(3/2)·a. =>
Вектор MD = b- 2a + (3/2)·a = b - (1/2)·a.
б) Вектор NE = b-a. Вектор МВ = 2·(b-a). Следовательно, вектор NE СОНАПРАВЛЕН вектору МВ, то есть, параллелен ему, что и требовалось доказать.
а) CD= b+(3/2)·a. MB= 2·(b-a). MD= b- (1/2)·a.
б) доказательство в объяснении.
Объяснение:
a) По правилу сложения векторов вектор CD = CE+ED. Вектор ED - средняя линия треугольника АВС и равен АС/2 = 3а/2, так как вектор СА = 3·СN = 3·a. Значит вектор CD = b+(3/2)·a.
Вектор МВ = СМ - MB = 2b - 2a = 2·(b-a).
Вектор MD = ME+ED; ME = CE-CM = b-2a. ED =(3/2)·a. =>
Вектор MD = b- 2a + (3/2)·a = b - (1/2)·a.
б) Вектор NE = b-a. Вектор МВ = 2·(b-a). Следовательно, вектор NE СОНАПРАВЛЕН вектору МВ, то есть, параллелен ему, что и требовалось доказать.
Нехай дано ∆ АВС рівнобедрений, АС — основа.
Вписане коло, т. D, E, F — точки дотику. AF = 5 см, BD = 6см
Знайдемо P∆ АВС
OF - радіус вписаного кола, тоді OF _|_ AC.
BF _|_ AC — висота, проведена до основи рівнобедреного ∆ АВС, тоді BF– медіана, AF = FC = 5 см. AC = AF + FC; AC = 5 + 5 = 10 см.
AF = AD = 5 см (як відрізки дотичних, проведених з т. А до кола).
BD = DF = 6 см; СF = CE = 5 см (як відрізки дотичних, проведених
з точок В і С до кола). AB = AD + DB; AB = 5 + 6 = 11 см. AB = ВС = 11 см (∆АВС - рівнобедрений). Р∆авс - АВ + BC + AC;
P∆ABC = 11 + 11 + 10 = 32 см
Відповідь: Р∆ABC 32 см.
все переписуй:)