В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
danilkuzin201
danilkuzin201
26.04.2022 18:38 •  Геометрия

Найти косинус угла между векторами a+b и q=a-b если iai=5 ibi=8,угол между a и b равен 60 градусов

Показать ответ
Ответ:
5675566
5675566
03.10.2020 06:42
 \vec a \cdot \vec b=|\vec a|\cdot |\vec b| \cdot cos(\vec a,\vec b) \\ \\ \vec a \cdot \vec b=5\cdot 8 \cdot cos60^{o}=20 \\ \\ 


 
Найдем скалярный квадрат суммы
(a+b)²=|a+b|²=a²+2ab+b²
|a+b|²=5²+2·20+8²
|a+b|²=129  ⇒|a+b| =√129

Скалярный квадрат разности
(a-b)²=|a-b|²=a²-2ab+b²
|a-b|²=5²-2·20+8²
|a-b|²=49  ⇒|a-b| =√49 =7

Скалярное произведение разности векторов а  и b на их сумму

(a-b)·(a+b)=a²+b²=5²+64=89

Тогда
 cos((a-b)^(a+b))=(a-b)·(a+b))/(|a-b|·|a+b|)

cos(a^(a+b))=89/7√129
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота