Sin = отношение противолежащего катета к гипотенузе cos = отношение прилежащего катета к гипотенузе tg = отношение противолезащего катета к прилежащему Центральный угол равен дуге, на которую он опирается вписанный угол равен половине дуги, на которую он опирается Теорема Пифагора: Квадрат гипотенузы равен сумме квадратов катетов радиус - прямая, проведенная из центра окружности к окружности центр. угол(1) и впис.угол (2), касательная к окружности(3) - на картинке
Треугольники бывают: равнобедренные, равносторонние, прямоугольные и тупоугольные 4 замечательные точки: точка пересечения высот, точка пересечения медиан, точка пересечения биссектрисс, серединный перпендикуляр в равнобедренном треугольнике две стороны равны, и углы при основании равны в прямоугольном треугольнике один из углов равен 90°
Можно взять три взаимно перпендикулярные координатные оси и разместить четыре вершины прирамиды в точках (0,0,0) (1,0,0) (0,1,0) (0,0,1). Легко убедиться, что любая из вершин, кроме (0,0,0), является вершиной трехгранного угла, заданного в задаче.
Сама пирамида при этом представляет собой правильную треугольную пирамиду, "боковые" грани которой - равнобедренные прямоугольние треугольники, а "основание" - правильный треугольник с вершинами в точках (1,0,0) (0,1,0) (0,0,1).
Поэтому искомый угол равен 60 градусам.
Эту же мысль (трудно назвать это решением - уж больно просто:)) можно выразить без упоминания координатных осей. Дело в том, что упомянутая пирамида - это часть обыкновенного куба, отсекаемая плоскостью, проходящей через концы трех ребер, имеющих общую вершину.
Берется какая -то вершина куба АBCDA1B1C1D1, например, А, и проводится сечение через точки В, D и А1, у пирамиды А1BDA все трехгранные углы при вершинах "основания" A1BD соответствуют условию задачи. В самом деле, рассмотрим, например, вершину D. Треугольники ADB и ADA1 - равноберенные прямоугольние, поэтому углы АDB и ADA1 равны 45 градусов. Что же касается двугранного угла между плоскостями АDB и ADA1, то это - двугранный угол между гранями куба :), то есть он равен 90 градусам.
Поэтому трехгранный угол при вершине D пирамиды А1BDA удовлетворяет условию задачи. По условию задачи, нужно найти угол A1DB, но он очевидно равен 60 градусам, поскольку треугольник A1DB равносторонний.
cos = отношение прилежащего катета к гипотенузе
tg = отношение противолезащего катета к прилежащему
Центральный угол равен дуге, на которую он опирается
вписанный угол равен половине дуги, на которую он опирается
Теорема Пифагора: Квадрат гипотенузы равен сумме квадратов катетов
радиус - прямая, проведенная из центра окружности к окружности
центр. угол(1) и впис.угол (2), касательная к окружности(3) - на картинке
Треугольники бывают: равнобедренные, равносторонние, прямоугольные и тупоугольные
4 замечательные точки: точка пересечения высот, точка пересечения медиан, точка пересечения биссектрисс, серединный перпендикуляр
в равнобедренном треугольнике две стороны равны, и углы при основании равны
в прямоугольном треугольнике один из углов равен 90°
все, что смогла
У этой задачки есть очень наглядное решение.
Можно взять три взаимно перпендикулярные координатные оси и разместить четыре вершины прирамиды в точках (0,0,0) (1,0,0) (0,1,0) (0,0,1). Легко убедиться, что любая из вершин, кроме (0,0,0), является вершиной трехгранного угла, заданного в задаче.
Сама пирамида при этом представляет собой правильную треугольную пирамиду, "боковые" грани которой - равнобедренные прямоугольние треугольники, а "основание" - правильный треугольник с вершинами в точках (1,0,0) (0,1,0) (0,0,1).
Поэтому искомый угол равен 60 градусам.
Эту же мысль (трудно назвать это решением - уж больно просто:)) можно выразить без упоминания координатных осей. Дело в том, что упомянутая пирамида - это часть обыкновенного куба, отсекаемая плоскостью, проходящей через концы трех ребер, имеющих общую вершину.
Берется какая -то вершина куба АBCDA1B1C1D1, например, А, и проводится сечение через точки В, D и А1, у пирамиды А1BDA все трехгранные углы при вершинах "основания" A1BD соответствуют условию задачи. В самом деле, рассмотрим, например, вершину D. Треугольники ADB и ADA1 - равноберенные прямоугольние, поэтому углы АDB и ADA1 равны 45 градусов. Что же касается двугранного угла между плоскостями АDB и ADA1, то это - двугранный угол между гранями куба :), то есть он равен 90 градусам.
Поэтому трехгранный угол при вершине D пирамиды А1BDA удовлетворяет условию задачи. По условию задачи, нужно найти угол A1DB, но он очевидно равен 60 градусам, поскольку треугольник A1DB равносторонний.