Диагонали прямоугольника в точке пересечения делятся пополам. Диагонали прямоугольника равны между собой. При пересечении диагоналей образуются равнобедренные треугольники. Рассмотрим один из них, вершина которого составляет 120 градусов. Находим углы при основании этого треугольника: (180 -120) :2 = 30градусов угол 30 гр лежит против меньшей стороны прямоугольника, принимаем меньшую сторону пр-ка за Х. Теперь рассмотрим треугольник, образованный одной диагональю. Он -прямоугольный, в котором меньший катет лежит против угла в 30 гр.и равен Х, следовательно гипотенуза(диагональ) = 2Х 2Х+Х = 36 (по условию) 3Х = 36 Х = 12 2Х = 24 ответ: 24 см - диагональ прямоугольника.
Решение: чтобы найти такую прямую, точки которой расположены одинаково далеко от вершин треугольника, нужно рассмотреть частный случай - найти такую точку в плоскости самого треугольника. Нетрудно догадаться, что эта точка - центр описанной окружности .
Рассмотрим . Это - египетский прямоугольный треугольник, что подтверждается теоремой Пифагора: . А центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы. Итак, радиус этой окружности равен
Рассмотрим прямоугольный треугольник . В нем . Третью сторону найдем по теореме Пифагора:
Это и есть искомое расстояние от точки до плоскости
Диагонали прямоугольника равны между собой.
При пересечении диагоналей образуются равнобедренные треугольники.
Рассмотрим один из них, вершина которого составляет 120 градусов.
Находим углы при основании этого треугольника: (180 -120) :2 = 30градусов
угол 30 гр лежит против меньшей стороны прямоугольника, принимаем меньшую сторону пр-ка за Х.
Теперь рассмотрим треугольник, образованный одной диагональю.
Он -прямоугольный, в котором меньший катет лежит против угла в 30 гр.и равен Х, следовательно гипотенуза(диагональ) = 2Х
2Х+Х = 36 (по условию)
3Х = 36
Х = 12
2Х = 24
ответ: 24 см - диагональ прямоугольника.
Решение: чтобы найти такую прямую, точки которой расположены одинаково далеко от вершин треугольника, нужно рассмотреть частный случай - найти такую точку в плоскости самого треугольника. Нетрудно догадаться, что эта точка - центр описанной окружности .
Рассмотрим . Это - египетский прямоугольный треугольник, что подтверждается теоремой Пифагора: . А центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы. Итак, радиус этой окружности равен
Рассмотрим прямоугольный треугольник . В нем . Третью сторону найдем по теореме Пифагора:
Это и есть искомое расстояние от точки до плоскости
ответ: