Площадь основания S=Dd/2=AC*BD/2. Т.к. диагоналиBD:AC=8:15, AC=15BD/8, то S=15BD/8*BD/2=15BD²/16, откуда ВD²=16S/15=16*240/15=256, ВD=16 см и АС=15*16/8=30 см. Зная диагонали ромба (у ромба все стороны равны, а диагонали пересекаются под прямым углом и в точке пересечения делятся пополам), можно найти его сторону а²=(d/2)²+(D/2)²=(BD/2)²+(AC/2)²=64+225=289, a=17 см. У прямого параллелепипеда боковые грани прямоугольники. Рассмотрим прямоугольный треугольник ВВ1Д - у него угол В прямой, угол В1=45, значит и угол Д=45, следовательно треугольник равнобедренный ВВ1=ВД=16 см (это есть высота параллелепипеда с). Площадь полной поверхности Sпол=2(ав+вс+ас)=2(а²+2ас)=2(17²+2*17*16)=1666 см².
Рассмотрим наш тупоугольный треугольник ABC с известным углом C равным 150° и стороной AC равной 1 см. По условию задачи, перпендикуляр MN опущен к основанию ΔABC, деля сторону AB пополам. Если мы продолжим сторону BC и полученный отрезок соединим с AB, у нас образуется прямоугольный треугольник (нарисован зеленым). При том, что угол C₁ смежный с углом C, а значит равняется 30°. Теперь рассмотрим прям-ный Δ-к ACB. Зная два его угла (90° и 30°), можно найти третий, который равен 60°. У этого треугольника гипотенуза AC равна 1 см, по св-ву катета лежащего напротив угла 30° мы находим сторону AD: AD = 1/2 = 0,5. Сторона DC по т. Пифагора равна √3/2.
Теперь, как можно заметить из рисунка, AD является общей стороной для обоих треугольников. Но нам нужно найти MN, которая параллельна стороне AD. Прямая MN образует Δ-к MBN лежащий внутри большого Δ-ка ABC и данные треугольники являются подобными. Зная, что MN делит сторону AB в отношении 1:2 делаем вывод, что периметр Δ-ка MBN меньше периметра Δ-ка ABC в 2 раза, то же самое касается всех их сторон и площадей. Отсюда можно найти сторону MN:
Рассмотрим наш тупоугольный треугольник ABC с известным углом C равным 150° и стороной AC равной 1 см. По условию задачи, перпендикуляр MN опущен к основанию ΔABC, деля сторону AB пополам. Если мы продолжим сторону BC и полученный отрезок соединим с AB, у нас образуется прямоугольный треугольник (нарисован зеленым). При том, что угол C₁ смежный с углом C, а значит равняется 30°. Теперь рассмотрим прям-ный Δ-к ACB. Зная два его угла (90° и 30°), можно найти третий, который равен 60°. У этого треугольника гипотенуза AC равна 1 см, по св-ву катета лежащего напротив угла 30° мы находим сторону AD: AD = 1/2 = 0,5. Сторона DC по т. Пифагора равна √3/2.
Теперь, как можно заметить из рисунка, AD является общей стороной для обоих треугольников. Но нам нужно найти MN, которая параллельна стороне AD. Прямая MN образует Δ-к MBN лежащий внутри большого Δ-ка ABC и данные треугольники являются подобными. Зная, что MN делит сторону AB в отношении 1:2 делаем вывод, что периметр Δ-ка MBN меньше периметра Δ-ка ABC в 2 раза, то же самое касается всех их сторон и площадей. Отсюда можно найти сторону MN:
a/a₁ = b/b₁ = c/c₁ ⇒ AD = 2MN ⇒ MN = 0,5/2 = 0,25
ответ: длина перпендикуляра 0,25 см.