AB:BC:AC=2:4:3 То есть, все эти стороны равны x, просто одна имеет таких x - 2, другая - 4, а третья - 3 таких x. Тогда, AB - это 2x; BC=4x; AC=3x. Всего, если сложить все стороны, получается: 2+4+3=9. Нам дан периметр, а это - сумма всех сторон треугольника. P=45см. Делим 45 на 9, получаем 5 см - это мы нашли одну часть. То есть, 1x. Найдем AB. AB=2x, мы x нашли, подставляем: AB=2*5=10см. Так же с BC: BC=4*5=20см. AC=3*5=15см. Можно проверить, сложим все стороны: 10+20+15=45. Всё верно! ответ: AB=10, BC=20, AC=15 см.
Рассмотрим треугольник ВСЕ (см. приложение). В нем биссектриса делит противолежащую сторону на два отрезка. Известно, что биссектриса делит сторону так, что отрезки пропорциональны прилежащим сторонам треугольника, поэтому ВС/ЕС=20/16. Значит, можно обозначить их длины как 20х и 16х соответственно. Треугольник АВС равнобедренный, следовательно, его биссектриса ВЕ является также высотой и медианой. Из того, что она медиана, следует, что периметр Р=2ВС+2ЕС=72х, а из того, что высота - то, что к ВСЕ можно применить теорему Пифагора:
Мы уже знаем, что Р=72х. Подставляя, находим, что Р=216 см.
То есть, все эти стороны равны x, просто одна имеет таких x - 2, другая - 4, а третья - 3 таких x.
Тогда, AB - это 2x;
BC=4x;
AC=3x.
Всего, если сложить все стороны, получается: 2+4+3=9.
Нам дан периметр, а это - сумма всех сторон треугольника. P=45см.
Делим 45 на 9, получаем 5 см - это мы нашли одну часть. То есть, 1x.
Найдем AB. AB=2x, мы x нашли, подставляем: AB=2*5=10см.
Так же с BC: BC=4*5=20см.
AC=3*5=15см.
Можно проверить, сложим все стороны: 10+20+15=45. Всё верно!
ответ: AB=10, BC=20, AC=15 см.
Треугольник АВС равнобедренный, следовательно, его биссектриса ВЕ является также высотой и медианой. Из того, что она медиана, следует, что периметр Р=2ВС+2ЕС=72х, а из того, что высота - то, что к ВСЕ можно применить теорему Пифагора:
Мы уже знаем, что Р=72х. Подставляя, находим, что Р=216 см.