Прямые, проведенные через вершины параллелограмма АВСD - параллельны, значит все грани получившейся фигуры АВСDА1B1C1D1 - трапеции. Проведем диагонали оснований. Точка пересечения диагоналей параллелограммов делит их пополам, значит отрезок ОО1 является средней линией трапеций АСС1А1 и ВDD1В1 (то, что это тоже трапеции, доказывать не надо?). Средняя линия трапеции равна полусумме оснований, то есть ОО1= (АА1+СС1)/2 = 11. Но ОО1 - это средняя линия трапеции ВВ1D1D тоже и равна (ВВ1+DD1)|2=11, отсюда ВВ1+DD1=22, а DD1= 22- 12 =10. ответ: DD1 = 10см.
АВС - осевое сечение конуса. Тр-к АВС - равнобедренный. ВО - высота конуса - высота сечения, биссектриса и медина, проведенная из вершины В. Угол АВО равен углу ОВС = а. К - центр описанной около треугольника АВС окружности.КМ - высота и медиана равнобедренного тр-ка ВКС. ВМ= МС =ВК умнож на синус угла а, ВК = радиусу опис окружности. ВС = 2ВМ.Тогда высота конуса ОВ = ВС умножить на косинус угла а. ОВ = двум радиусам умноженным на синус угла а и на косинус угла а = радиус умножить на синус двойного угла а.
ответ: DD1 = 10см.