1. Пусть ∠А=α; т.к. центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, то
АО=ВО=СО=R, и ∠А=∠В, как углы при основании равнобедренного ΔАОВ. Тогда ∠АОВ=180°-2∠А=180°-2α
2. Рассмотрим Δ ВОТ, где Т- основание высоты, проведенной к гипотенузе. ∠АОВ для него внешний угол при вершине О, потому равен сумме двух внутренних, не смежных с ним углов ΔАОВ, один из которых по условию равен углу А, это ∠ОВТ=α, а другой ∠ОТВ=90°, тогда используя свойство внешнего угла ∠АОВ=∠ОТВ+∠ОВТ, перепишем последнее равенство так 180-2α=90+α, откуда 3α=180-90; α=90/3=30, Значит,
ОТ= ОВ/2=R/2=0.5R, как катет, лежащий против угла в 30° в прямоугольном ΔВОТ.
Зная теперь АО и ОТ, найдем искомое расстояние АТ=АО+ОТ = R+0.5R=1.5R
а) по следствию из теоремы синусов:
a / sin∠A = 2R
sin∠A = a / (2R) = 5/8
По значению синуса угол однозначно определить нельзя, он может быть как острым так и тупым, значит треугольник задан неоднозначно.
б) S = 1/2 · ab·sin∠C
sin∠C = 2S/(ab) = 24 / 30 = 4/5
По значению синуса угол однозначно определить нельзя, он может быть как острым так и тупым, значит треугольник задан неоднозначно.
в) по теореме косинусов:
АС² = BC² + AB² - 2·BC·AB·cos∠ABC
169 = BC² + 64 - 16 · BC · (-1/2)
BC² + 8·BC - 105 = 0
D = 64 + 420 = 484 = 22²
BC = (- 8 + 22)/2 = 7 или BC = (- 8 - 22)/2 = - 15 - не подходит по смыслу задачи
Так как третья сторона находится однозначно, то и треугольник задан однозначно.
1. Пусть ∠А=α; т.к. центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, то
АО=ВО=СО=R, и ∠А=∠В, как углы при основании равнобедренного ΔАОВ. Тогда ∠АОВ=180°-2∠А=180°-2α
2. Рассмотрим Δ ВОТ, где Т- основание высоты, проведенной к гипотенузе. ∠АОВ для него внешний угол при вершине О, потому равен сумме двух внутренних, не смежных с ним углов ΔАОВ, один из которых по условию равен углу А, это ∠ОВТ=α, а другой ∠ОТВ=90°, тогда используя свойство внешнего угла ∠АОВ=∠ОТВ+∠ОВТ, перепишем последнее равенство так 180-2α=90+α, откуда 3α=180-90; α=90/3=30, Значит,
ОТ= ОВ/2=R/2=0.5R, как катет, лежащий против угла в 30° в прямоугольном ΔВОТ.
Зная теперь АО и ОТ, найдем искомое расстояние АТ=АО+ОТ = R+0.5R=1.5R
ответ 1.5R