Пусть сначала было n точек. Тогда у этих n точек была n-1 пара соседних точек (1 и 2 точки, 2 и 3 точки, и так далее, n-1 и n точки, если нумеровать слева направо). Значит, после того, как между каждыми двумя соседними точками отметили по одной, точек стало n+(n-1)=2n-1. Аналогично рассуждая, получим, что у 2n-1 точки есть 2n-2 пары соседних точек. Значит, после того, как операцию проделали ещё раз, точек стало (2n-1)+(2n-2)=4n-3. Если 4n-3=101, то 4n=104, n=26. Таким образом, сначала было 26 точек.
Известно что расстояние от точки до прямой является перпендикуляр.
А сколь велика разница в пути если двигаться не по перпендикуляру, а по близкой к нему наклонной? Проделайте следующий опыт. Пусть AB - перпендикуляр к прямой, причём B - основание перпендикуляра; C - некоторая другая точка прямой. Попробуйте сначала оценить на глаз с точностью до 0,1 сантиметра длину AC, а затем, выполнив построение, измерьте это расстояние с такой же точностью, если: a)AB=5cm; BC=1cm. б) AB=10cm; BC=1cm.
Объяснение:
Построение случаев а) и б) в прикрепленных файлах.
Оценка на "глаз" с точностью до 0,1 показала:
а) АС≈5,5 см ;б) АС≈10,5 см.
Измерение этих расстояний с линейки показало:
а) АС≈5,3 см ;б) АС≈10,2 см. Измерения с линейки не дает точный результат длины отрезка, поэтому оставлен знак " приблизительно равно".
=========================
Даже применение разных линеек для измерения длин влияет на результат.
==========================
Применение теоремы Пифагора , не изученную Вами , дало следующие результаты длин :
Известно что расстояние от точки до прямой является перпендикуляр.
А сколь велика разница в пути если двигаться не по перпендикуляру, а по близкой к нему наклонной? Проделайте следующий опыт. Пусть AB - перпендикуляр к прямой, причём B - основание перпендикуляра; C - некоторая другая точка прямой. Попробуйте сначала оценить на глаз с точностью до 0,1 сантиметра длину AC, а затем, выполнив построение, измерьте это расстояние с такой же точностью, если: a)AB=5cm; BC=1cm. б) AB=10cm; BC=1cm.
Объяснение:
Построение случаев а) и б) в прикрепленных файлах.
Оценка на "глаз" с точностью до 0,1 показала:а) АС≈5,5 см ;б) АС≈10,5 см.
Измерение этих расстояний с линейки показало:а) АС≈5,3 см ;б) АС≈10,2 см. Измерения с линейки не дает точный результат длины отрезка, поэтому оставлен знак " приблизительно равно".
=========================
Даже применение разных линеек для измерения длин влияет на результат.
==========================
Применение теоремы Пифагора , не изученную Вами , дало следующие результаты длин :
а)АС=√(1²+5²)=√26≈5,0,
б)АС=√(1²+10²)=√101≈10,0.
orjabinina ,