Из условия известно, что один угол параллелограмма в 2 раза больше другого. Для того, чтобы найти меньший угол параллелограмма мы должны вспомнить свойства углов параллелограмма и чему равна сумма углов четырехугольника.
Итак, у параллелограмма противоположные углы равны между собой.
Итак, одну пара углов обозначим с переменной x, тогда вторая пара углов равна 2x.
Из условия известно, что один угол параллелограмма в 2 раза больше другого. Для того, чтобы найти меньший угол параллелограмма мы должны вспомнить свойства углов параллелограмма и чему равна сумма углов четырехугольника.
Итак, у параллелограмма противоположные углы равны между собой.
Итак, одну пара углов обозначим с переменной x, тогда вторая пара углов равна 2x.
Сумма углов четырехугольника равна 360°.
x + x + 2x + 2x = 360;
6x = 360;
x = 360 : 6;
x = 60° меньший угол параллелограмма,
Тогда больший равен 60 * 2 = 120°.
Радиус окружности вписанной в квадрат равна 3√2см. Найти сторону квадрата и радиус окружности, описанной около квадрата.
Объяснение:
1) Тк окружность вписана , то она касается всех сторон квадрата и диаметр окружности равен стороне квадрата : а₄=2r=2*3√2=6√2 (cм).
2) Если теперь около квадрата ABCD описать окружность, то диагональ квадрата AC равна диаметру окружности .
ΔАВС-прямоугольного , по т. Пифагора АС=√( (6√2)²+(6√2)²)=12 (см).
Поэтому радиус , описанной около квадрата , окружности R=12:2=6 (см).