Пусть ABC – заданный равнобедренный треугольник. АВ=16 см – его основание, которое лежит на плоскости a . СН=6 см – расстояние от вершины С до плоскости a. Проекции боковых сторон треугольника АС и ВС, отрезки АН и ВН соответственно, образуют угол 90°. Так как АСВ – равнобедренный, то и АНВ – тоже равнобедренный, АН=ВН. Кроме того, в нём АНВ=90° по условию. Строим СК – искомую высоту АСВ. Она одновременно является его медианой, значит АК=ВК=0,5*АВ=0,5*16=8 см. Проекция СК на плоскость a - НК является медианой равнобедренного АНВ, а следовательно одновременно его высотой и биссектрисой. Тогда, АНК=ВНК=0,5*90=45°. В АНК: АНК=45°, НКА=90° следовательно, КАН=45°. Таким образом, АНК – равнобедренный, в нём НК=АК=8 см. Рассмотрим прямоугольный СНК (СНК=90° - по условию). Из него имеем: СК2=СН2+НК2=62+82=100, откуда СК=10 см.
B
C
K
H
a
Решение :
Пусть ABC – заданный равнобедренный треугольник. АВ=16 см – его основание, которое лежит на плоскости a . СН=6 см – расстояние от вершины С до плоскости a. Проекции боковых сторон треугольника АС и ВС, отрезки АН и ВН соответственно, образуют угол 90°.
Так как АСВ – равнобедренный, то и АНВ – тоже равнобедренный, АН=ВН. Кроме того, в нём АНВ=90° по условию.
Строим СК – искомую высоту АСВ. Она одновременно является его медианой, значит АК=ВК=0,5*АВ=0,5*16=8 см. Проекция СК на плоскость a - НК является медианой равнобедренного АНВ, а следовательно одновременно его высотой и биссектрисой. Тогда, АНК=ВНК=0,5*90=45°. В АНК: АНК=45°, НКА=90° следовательно, КАН=45°. Таким образом, АНК – равнобедренный, в нём НК=АК=8 см.
Рассмотрим прямоугольный СНК (СНК=90° - по условию). Из него имеем: СК2=СН2+НК2=62+82=100, откуда СК=10 см.
ответ: Высота заданного треугольника СК=10 см.
1. Верные утверждения про параллелограмм:
a. Противоположные стороны параллелограмма равны
c. Противоположные углы параллелограмма равны
d. Сумма углов параллелограмма равна 360∘
e. Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник
h. Точка пересечения диагоналей параллелограмма находится на равных расстояниях от противоположных вершин параллелограмма
2. Верные утверждения про прямоугольник:
a. Углы прямоугольника равны
b. Диагонали прямоугольника равны
c. Биссектриса угла прямоугольника отсекает от него равнобедренный треугольник
f. Точка пересечения диагоналей прямоугольника находится на равных расстояниях от его противоположных сторон
g. Точка пересечения диагоналей прямоугольника находится на равных расстояниях от его вершин
h. Квадрат является прямоугольником
3. Верные утверждения про ромб:
c. Биссектриса угла ромба является его диагональю
d. Точка пересечения диагоналей ромба находится на равных расстояниях от всех четырёх его сторон
e. Точка пересечения диагоналей ромба находится на равных расстояниях от его противоположных сторон
g. У всех ромбов одинаковый угол между диагоналями
h. Диагонали разбивают ромб на четыре равных треугольника
i. Квадрат является ромбом
j. Ромб, у которого равны диагонали, является квадратом
4. Верные утверждения про равнобокую трапецию:
a. В равнобокой трапеции есть равные углы
b. Диагонали равнобокой трапеции равны
e. Точка пересечения диагоналей равнобокой трапеции находится на равных расстояниях от её боковых сторон
g. Диагонали разбивают равнобокую трапецию на четыре треугольника, два из которых равны
h. Диагонали разбивают равнобокую трапецию на четыре треугольника, два из которых равнобедренные