ММ₁К₁К - трапеция СС₁- средняя линия трапеции СС₁=(ММ₁+КК₁)/2=(16+6)/2=11
2) Точка M имеет абсциссу х=√(12) =2√3 ординату у=0 Точка К имеет асбциссу х=-2 ордината у находится из уравнения у²=12-4 у=√8 у=2√2 точка O (0;0) ОМ имеет длину 2√3 ОМ- радиус вектор ОМ=2√3 ОМ=ОК=2√3
tg∠КОМ=-√2 ( так как тангенс смежного с ним угла α равен √2 tg α=2√2/2=√2) cos²∠КОМ= 1/(1+tg²∠KOM)=1/3 sin²∠КОМ=1-cos²∠KOM=1-(1/3)=2/3 sin ∠KOM=√(2/3) S=ОК·ОМ· sin ∠KOM/2= (2√3)²·(√(2/3))/2=2√6 кв. ед
ММ₁К₁К - трапеция
СС₁- средняя линия трапеции
СС₁=(ММ₁+КК₁)/2=(16+6)/2=11
2) Точка M имеет абсциссу х=√(12) =2√3 ординату у=0
Точка К имеет асбциссу х=-2 ордината у находится из уравнения
у²=12-4
у=√8
у=2√2
точка O (0;0)
ОМ имеет длину 2√3
ОМ- радиус вектор
ОМ=2√3
ОМ=ОК=2√3
tg∠КОМ=-√2 ( так как тангенс смежного с ним угла α равен √2 tg α=2√2/2=√2)
cos²∠КОМ= 1/(1+tg²∠KOM)=1/3
sin²∠КОМ=1-cos²∠KOM=1-(1/3)=2/3
sin ∠KOM=√(2/3)
S=ОК·ОМ· sin ∠KOM/2= (2√3)²·(√(2/3))/2=2√6 кв. ед
3 пары равных треугольников дна рисунке.
Объяснение:
1.
∠AEB = 180° - ∠BED, так как эти углы смежные,
∠AEC = 180° - ∠CED, так как эти углы смежные,
по условию ∠BED = ∠CED, значит и ∠АЕВ = ∠АЕС.
2.
Рассмотрим ΔАЕВ и ΔАЕС:
∠ВАЕ = ∠САЕ по условию,
∠АЕВ = ∠АЕС (доказано в п. 1),
АЕ - общая сторона, значит
ΔАЕВ = ΔАЕС по стороне и двум прилежащим к ней углам.
В равных треугольниках против равных углов лежат равные стороны, следовательно АВ = АС и ВЕ = СЕ.
3.
Рассмотрим ΔBED и ΔCED:
ВЕ = СЕ (доказано в п. 2),
∠BED = ∠CED по условию,
ED - общая сторона, значит
ΔBED = ΔCED по двум сторонам и углу между ними.
Из равенства треугольников следует, что BD = CD.
4.
Рассмотрим ΔABD и ΔACD:
АВ = АС (доказано в п. 2),
BD = CD (доказано в п. 3),
AD - общая сторона, значит
ΔABD и ΔACD по трем сторонам.