Рассмотрим треугольники FMN и FNK. Эти треугольники равны по первому признаку равенства треугольников(по двум сторонам и углу между ними). Сторона FK-общая,
сторона FM=NK, докажем это - по условию EF=EK (треугольник равобедренный), М-середина стороны EF, значит FM=1/2EF, N-середина ЕК, значит NK=1/2ЕК, значит FM=NK, а угол F=К, так треугольник FEK равнобедренный, то углы при основании равны. А так треугольники равны, то и все стороны у треугольников равны (третий признак равенства), значит сторона FN=KM
№2
В этой задачи перепроверь, что надо доказать, треугольника ЕРЕ не существует, уточни условие и я дорешаю.
1) Радиус окружности, описанной около правильного шестиугольника, равен стороне этого шестиугольника. Тогда длина дуги окружности, стягиваемой стороной данного шестиугольника равна L=2πR/6 = 2π9/6=3π. ответ: L=3π. 2) Центр вписанной и описанной окружности правильного треугольника лежит в одной точке - центре треугольника. Эта точка делит высоту правильного треугольника в отношении 2:1, считая от вершины. причем 2/3 этой высоты - радиус описанной окружности, а 1/3 - радиус вписанной окружности.. Итак, R=2*7=14, а L=2πR или L=28π ответ: L=28π. 3) Диагонали правильного шестиугольника, пересекаясь в точке О, делят его на 6 равносторонних треугольника. Рассмотрим треугольник АОВ и ромб АВОG. <BOC=60°, а <GBO=30°. Следовательно, <GBC=90°. Точно так же <BCF=90°. ВС=GF, как стороны правильного шестиугольника. CF=BG, как стороны равных треугольников ВОG и CDF. Итак, ВСFG - прямоугольник, так как противоположные стороны попарно равны, а прилежащие к одной стороне углы равны 90°. Что и требовалось доказать. Если сторона шестиугольника равна "а", то ВС=FG=а, BG=CF= a√3 (по Пифагору из треугольника ВОG).
№1
Рассмотрим треугольники FMN и FNK. Эти треугольники равны по первому признаку равенства треугольников(по двум сторонам и углу между ними). Сторона FK-общая,
сторона FM=NK, докажем это - по условию EF=EK (треугольник равобедренный), М-середина стороны EF, значит FM=1/2EF, N-середина ЕК, значит NK=1/2ЕК, значит FM=NK, а угол F=К, так треугольник FEK равнобедренный, то углы при основании равны. А так треугольники равны, то и все стороны у треугольников равны (третий признак равенства), значит сторона FN=KM
№2
В этой задачи перепроверь, что надо доказать, треугольника ЕРЕ не существует, уточни условие и я дорешаю.
L=2πR/6 = 2π9/6=3π.
ответ: L=3π.
2) Центр вписанной и описанной окружности правильного треугольника лежит в одной точке - центре треугольника. Эта точка делит высоту правильного треугольника в отношении 2:1, считая от вершины.
причем 2/3 этой высоты - радиус описанной окружности, а 1/3 - радиус вписанной окружности.. Итак, R=2*7=14, а L=2πR или L=28π
ответ: L=28π.
3) Диагонали правильного шестиугольника, пересекаясь в точке О, делят его на 6 равносторонних треугольника. Рассмотрим треугольник АОВ и ромб АВОG. <BOC=60°, а <GBO=30°. Следовательно, <GBC=90°.
Точно так же <BCF=90°. ВС=GF, как стороны правильного шестиугольника. CF=BG, как стороны равных треугольников ВОG и CDF.
Итак, ВСFG - прямоугольник, так как противоположные стороны попарно равны, а прилежащие к одной стороне углы равны 90°.
Что и требовалось доказать.
Если сторона шестиугольника равна "а", то ВС=FG=а, BG=CF= a√3 (по Пифагору из треугольника ВОG).