Обозначим трапецию АВСD; BC||AD. BC=b=11 см, AD=a=25 см
Опустим из вершины В высоту ВН.
Высота равнобедренной трапеции, опущенная из вершины тупого угла, делит основание на отрезки, меньший из которых равен полуразности оснований, больший - их полусумме. ⇒
Пусть этот параллелограмм АВСД. СМ и ДМ - биссектрисы. АМ||СД, СМ - секущая. Накрестлежащие углы при пересечении параллельных прямых секущей равны. Угол ВМС=углу МСД. Но так как СМ биссектриса и угол МСД=ВСМ, то все эти три угла равны. Из равенства углов при основании СМ треугольника МВС следует. что этот треугольник - равнобедренный. МВ=Вс=26. Точно также доказывается равенство сторон АМ и АД треугольника АМД. Следовательно, большая сторона АВ=СД=АМ+МВ=26+26=52. -------- Замечу, что биссектриса угла параллелограмма отсекает от него равнобедренный треугольник ( иногда сюда входят продолжения сторон). Это свойство биссектрисы пригодится при решении многих задач.
ответ: 432 см²
Объяснение:
Обозначим трапецию АВСD; BC||AD. BC=b=11 см, AD=a=25 см
Опустим из вершины В высоту ВН.
Высота равнобедренной трапеции, опущенная из вершины тупого угла, делит основание на отрезки, меньший из которых равен полуразности оснований, больший - их полусумме. ⇒
АН=(25-11):2=7 см
DH=(25+11):2=18 см
ВС||AD, диагональ трапеции ВD- секущая. ⇒ ∠СВD=∠BDA (по свойству накрестлежащих углов)..
ВD - биссектриса угла В, поэтому и ∠АВD=∠BDA. Углы ∆ АВD при основании BD равны, ⇒ ∆ АВD равнобедренный, АВ=АD=25 см.
Из ∆ АВН по т.Пифагора ВН=24 ( стороны ∆ АВН из Пифагоровых троек).
Площадь трапеции равна произведению полусуммы оснований на высоту. Полусумма оснований DH=18 см
Ѕ(ABCD)=HD•BH=18•24=432 см²
СМ и ДМ - биссектрисы.
АМ||СД, СМ - секущая.
Накрестлежащие углы при пересечении параллельных прямых секущей равны. Угол ВМС=углу МСД.
Но так как СМ биссектриса и угол МСД=ВСМ, то все эти три угла равны. Из равенства углов при основании СМ треугольника МВС следует. что этот треугольник - равнобедренный. МВ=Вс=26.
Точно также доказывается равенство сторон АМ и АД треугольника АМД.
Следовательно, большая сторона АВ=СД=АМ+МВ=26+26=52.
--------
Замечу, что биссектриса угла параллелограмма отсекает от него равнобедренный треугольник ( иногда сюда входят продолжения сторон). Это свойство биссектрисы пригодится при решении многих задач.