В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
ответ:tgα∗ctgα=1
а) tg \alpha =2tgα=2 ctg \alpha =1:2= 0,5ctgα=1:2=0,5
\frac{tg a+ctg a}{tg a-ctg a}= \frac{2+0,5}{2-0,5}= \frac{2,5}{1,5}= \frac{5}{3}=1 \frac{2}{3}
tga−ctga
tga+ctga
=
2−0,5
2+0,5
=
1,5
2,5
=
3
5
=1
3
2
б) \frac{sin \alpha }{cos \alpha }=2
cosα
sinα
=2 sin \alpha =2*cos \alphasinα=2∗cosα
\frac{sin a -cos a}{sin a+cos a} = \frac{2*cos a-cos a}{2*cos a+cos a}= \frac{cosa}{3cosa} = \frac{1}{3}
sina+cosa
sina−cosa
=
2∗cosa+cosa
2∗cosa−cosa
=
3cosa
cosa
=
3
1
в) \frac{2sin a+3cos a}{3sin a-7cos a} = \frac{4cos a+3cos a}{6cos a-7cos a} = \frac{7cos a}{-cos a}= \frac{7}{-1}=-7
3sina−7cosa
2sina+3cosa
=
6cosa−7cosa
4cosa+3cosa
=
−cosa
7cosa
=
−1
7
=−7
г) \frac{sin^2a+2cos^2 a}{sin^2a-2cos^2 a}= \frac{(2*cos a)^2+2cos^2 a}{(2*cos a)^2-2cos^2 a}= \frac{4cos^2 a+2cos^2 a}{4cos^2 a-2cos^2 a}= \frac{6cos^2 a}{2cos^2 a} = \frac{6}{2}=3
sin
2
a−2cos
2
a
sin
2
a+2cos
2
a
=
(2∗cosa)
2
−2cos
2
a
(2∗cosa)
2
+2cos
2
a
=
4cos
2
a−2cos
2
a
4cos
2
a+2cos
2
a
=
2cos
2
a
6cos
2
a
=
2
6
=3
(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.