Ищем высоту пирамиды : будет прямоугольный треугольник: два катета
Один - высота пирамиды
Второй - половина диагонали основания , гипотенуза - боковое ребро
Половина диагонали основания равна 4корнч из 2
Высота пирамиды равна 4v2*tg60=4v6
Теперь ищем высоту боковой стороны
Из прямоугольного треугольника где катет высота пирамиды, половина стороны , если из точки пересечения диагоналей провести перпендикуляр на сторону основания
Ищем высоту пирамиды : будет прямоугольный треугольник: два катета
Один - высота пирамиды
Второй - половина диагонали основания , гипотенуза - боковое ребро
Половина диагонали основания равна 4корнч из 2
Высота пирамиды равна 4v2*tg60=4v6
Теперь ищем высоту боковой стороны
Из прямоугольного треугольника где катет высота пирамиды, половина стороны , если из точки пересечения диагоналей провести перпендикуляр на сторону основания
Половина основания 4 , высота пирамиды 4v6
Высота боковой стороны гипотенуза
4^2+(4v6)^2=16+16*6=16*7
Высота боковой грани 4v7
Площадь поверхности
8*8+1/2*4*4v7=64+8v7
Объяснение:
1) Даны точки М(3; 5) и N(-6; -1).
Угловой коэффициент к прямой, проходящей через эти точки равен:
к = Δу/Δх = (-1-5)/(-6-3) = -6/-9 = 2/3.
Уравнение прямой будет у = (2/3)х + в.
Для определения величины в подставим в это уравнение координаты одной из точек, возьмём А.
5 = (2/3)*3 + в, отсюда в = 5 - 2 = 3.
ответ: уравнение у = (2/3)х + 3.
В общем виде 2х - 3у + 9 = 0 (после приведения к общему знаменателю).
2) Пусть точка N, лежащая на оси абсцисс
и равноудаленная от точек Р(-1; 3) и К(0; 2), имеет координаты N(x; 0).
Используем равенство расстояний точки N от P и K.
NP² = (-1 - x)² + (3 - 0)² = 1 + 2x + x² + 9 = 10 + 2x + x².
NK² = (0 - x)² + (2 - 0)² = x² + 4.
Приравняем 10 + 2x + x² = x² + 4,
2x = 4 - 10
x = -6/2 = -3.
ответ: точка N(-3; 0).
К этому решению во вложении дан поясняющий рисунок.
Из него видно, что есть второй решения задания с использованием срединного перпендикуляра к отрезку АВ.