Ne 1
Дано: AB = 8.
ВС=2.
AD = 10,
LA = 30°
Дана трапеция с основаниями AD и BC, высотой BH
2
3
5
AD = 17.
ВС= 6.
LD = 90°.
AB = CD,
ВС= 3.
BH = 16.
две меньших L= 135",
S = 180
S = 144
стороны равны 4. АН = 2
больший угол
HD = 6
равен 135°
BH
Найти: S
AD
S
s
о
S = 10,08 ед.изм2
или
S = 10 8/100 ед.изм2 (десять целых восемь сотых единиц измерения в квадрате)
Объяснение:
1). Данную трапецию разделим на 3 сегмента:
1 Прямоугольник и 2 боковых треугольника.
2). Найдем площади данных фигур: (в клетках)
а). Sпр = 6 * 7 = 42 кл2.
б). Sтр1 = 5 * 6 / 2 = 15 кл2.
в). Sтр2 = 2 * 6 / 2 = 6 кл2.
Сумма данных сегментов будет являться площадью трапеции (в клетках):
г). Sтр = 42 + 15 + 6 = 63 кл2.
Единицы измерения не указаны, возможно см2, но продолжим так, зная размер клетки, получим площадь в ед.изм.:
S = 0,4 * 0,4 * 63 = 0,16 * 63 = 10,08 ед.изм2.
или
S = 4/10 * 4/10 * 63 = (4 * 4)/(10 * 10) * 63 = 16/100 * 63 = (16 * 63)/(100 * 1) = 1008/100 = 10 8/100 ед.изм2 (десять целых восемь сотых единиц измерения в квадрате)
Дано:
тр АВС (уг С=90)
АС = 16 см
ВС = 12 см
АВ = 20 см
Найти:
а) косинус меньшего угла
б) сумму квадратов косинусов острых углов
а) по свойству соотношения сторон и углов треугольника, против меньшей стороны лежит меньший угол, а значит меньшим будет угол, лежащий против стороны 12 см, по условию, следовательно, это угол А.
cos A = AC / AB; cos A = 4/5 = 0.8
б) Есть св-во - оно же основное геометрическое тождество, сумма квадратов косинусов острых углов прямоугольного треугольника равна единице, но вы похоже этого ещё не изучали, посему надо найти оставшийся косинус угла В и найти сумму квадратов косинусов вычислением, приступим:
cos B = CB / AB; cos B = 12/20 = 3/5 = 0.6
cos²A +cos²B = 0.8²+0.6²=0.64+0.36=1