Геометрическим местом точек (сокращенно — ГМТ), обладающих некоторым свойством, называется множество всех точек, которые обладают этим свойством.
Решение задачи на поиск ГМТ должно содержать доказательство того, что все точки множества , указанного в ответе, обладают требуемым свойством, а также наоборот, что все точки, обладающие требуемым свойством, лежат в этом множестве .
Приведем классические и важнейшие известные примеры ГМТ.
Пример
Геометрическое место точек, удаленных от данной точки на заданное положительное расстояние, — окружность (это определение окружности).
Пример
Геометрическое место точек, равноудаленных от данной прямой, — две параллельные прямые.
Пример
Геометрическое место точек, равноудаленных от концов отрезка, — серединный перпендикуляр к отрезку.
Пример
Геометрическое место внутренних точек угла, равноудаленных от его сторон, — биссектриса угла.
Два последних примера будут рассмотрены детально в разделах "Серединный перпендикуляр" и "Биссектриса".
Утверждение
ГМТ, обладающих двумя свойствами, является пересечением двух множеств: ГМТ, обладающих первым свойством, и ГМТ, обладающих, вторых свойств
Окружность = 360° 1) 5+4 =9 столько частей в этих 360° Меньшая дуга 360:9*4=40°*4=160° Градусная величина этой дуги соответствует величине центрального угла ( на рисунке 1 это угол АОВ). Вписанный угол АСВ равен половине центрального угла. 160°:2=80° - под этим углом видна хорда из любой точки на дуге АСВ Если точку взять на дуге по другую сторону хорды, то угол, под которым она будет видна, равен 360°:9*5:2=100°. Но обычно имеется в виду острый угол. ------------ 2) 7+3=10 столько частей в двух дугах. 360°:10*3=108° содержит центральный угол КОМ ( второй рисунок) Вписанный угол МЕК равен половине градусной меры центрального угла. 108°:2=54° - под этим углом видна вторая хорда. (Или, если точка расположена по другую сторону хорды, 360:10*7:2=126°)
Объяснение:
Определение
Геометрическим местом точек (сокращенно — ГМТ), обладающих некоторым свойством, называется множество всех точек, которые обладают этим свойством.
Решение задачи на поиск ГМТ должно содержать доказательство того, что все точки множества , указанного в ответе, обладают требуемым свойством, а также наоборот, что все точки, обладающие требуемым свойством, лежат в этом множестве .
Приведем классические и важнейшие известные примеры ГМТ.
Пример
Геометрическое место точек, удаленных от данной точки на заданное положительное расстояние, — окружность (это определение окружности).
Пример
Геометрическое место точек, равноудаленных от данной прямой, — две параллельные прямые.
Пример
Геометрическое место точек, равноудаленных от концов отрезка, — серединный перпендикуляр к отрезку.
Пример
Геометрическое место внутренних точек угла, равноудаленных от его сторон, — биссектриса угла.
Два последних примера будут рассмотрены детально в разделах "Серединный перпендикуляр" и "Биссектриса".
Утверждение
ГМТ, обладающих двумя свойствами, является пересечением двух множеств: ГМТ, обладающих первым свойством, и ГМТ, обладающих, вторых свойств
1) 5+4 =9 столько частей в этих 360°
Меньшая дуга 360:9*4=40°*4=160°
Градусная величина этой дуги соответствует величине центрального угла ( на рисунке 1 это угол АОВ).
Вписанный угол АСВ равен половине центрального угла.
160°:2=80° - под этим углом видна хорда из любой точки на дуге АСВ
Если точку взять на дуге по другую сторону хорды, то угол, под которым она будет видна, равен
360°:9*5:2=100°. Но обычно имеется в виду острый угол.
------------
2) 7+3=10 столько частей в двух дугах.
360°:10*3=108° содержит центральный угол КОМ ( второй рисунок)
Вписанный угол МЕК равен половине градусной меры центрального угла.
108°:2=54° - под этим углом видна вторая хорда.
(Или, если точка расположена по другую сторону хорды,
360:10*7:2=126°)