Координаты точки B1 (3; 4; 4) (т.к. она симметрична точке B относительно плоскости xOz, то у них совпадают координаты x и z, а y противоположна по знаку).
Пусть АВСА! В1С1 данная призма. В основании прямоугольный тр-к, пусть угол АСВ =90 и этот тр-к вписан в круг - основание цилиндра. 1) Из тр-ка АСВ находим АВ = АС/cos30 = 4а /√3 = 4а√3/3 2) . В прямоугольном тр-ке центр описанной окружности лежит на середине гипотенузы, поэтому R( основания цилиндра )= 0,5 АВ = 0,5*(4а√3/3) = 2а√3/3 3) большей боковой грани призмы является грань, содержащая гипотенуэу. то ксть АВВ1А1 и тогда угол АВА1 =45 градусов, а угол А1АВ =90, значит угол АА1В =45 и тогда АА1 =АВ = 4а√3/3 это и есть высота цилиндра 4) V (цилиндра) = πR²Н = π (2а√3/3)² *(4а√3/3 ) = 16√3πа³ / 9
20
Объяснение:
Координаты точки B1 (3; 4; 4) (т.к. она симметрична точке B относительно плоскости xOz, то у них совпадают координаты x и z, а y противоположна по знаку).
О(0;0;0)
B1 (3; 4; 4)
В(3;-4;4)
OB=√((xb - xo)^2 + (yb - y0)^2 + (zb - zo)^2) = √((3 - 0))^2 + (-4 - 0)^2 + (4 - 0)^2)=√(9+16+16) = √41
OB=OB1=√41 -симметричны
BB1 = √((xb1 - xb)^2 + (yb1 - yb)^2 + (zb1 - zb)^2)=
=√((3 - 3))^2 + (4 - (-4))^2 + (4 - 4)^2)=√64 = 8
По т.Герона S=√(p(p-a)*(p-b)*(p-c))
p=P/2=(8+2√41)/2 = 4+√41
S=√(( 4+√41)( 4+√41-√41)^2*( 4+√41-8)) = √(16*(41-16)) = 4*5
Пусть АВСА! В1С1 данная призма. В основании прямоугольный тр-к, пусть угол АСВ =90 и этот тр-к вписан в круг - основание цилиндра. 1) Из тр-ка АСВ находим АВ = АС/cos30 = 4а /√3 = 4а√3/3 2) . В прямоугольном тр-ке центр описанной окружности лежит на середине гипотенузы, поэтому R( основания цилиндра )= 0,5 АВ = 0,5*(4а√3/3) = 2а√3/3 3) большей боковой грани призмы является грань, содержащая гипотенуэу. то ксть АВВ1А1 и тогда угол АВА1 =45 градусов, а угол А1АВ =90, значит угол АА1В =45 и тогда АА1 =АВ = 4а√3/3 это и есть высота цилиндра 4) V (цилиндра) = πR²Н = π (2а√3/3)² *(4а√3/3 ) = 16√3πа³ / 9