Так, теперь рассмотрим треугольник ABC (который основной) и ABH например( если что, то AH это высота. нарисуй треуг. что бы потом не запутаться) прямоугольный треуг. с проведенный к гипотенузе высотой делится на 3 подобных треугольника.( там по 2 углам получается) поэтому наш ABC подобен треуг. ABH. Еще раз повторю, нарисуй трег. чтобы видеть, что чему подобно. Найдем коэффициент подобия - то и есть коэффициент подобия этих треуг. AB тут выступает в роли гипотенузы треугольник ABH, надеюсь это понятно. теперь остается найти высоту
Так, теперь рассмотрим треугольник ABC (который основной) и ABH например( если что, то AH это высота. нарисуй треуг. что бы потом не запутаться)
прямоугольный треуг. с проведенный к гипотенузе высотой делится на 3 подобных треугольника.( там по 2 углам получается)
поэтому наш ABC подобен треуг. ABH.
Еще раз повторю, нарисуй трег. чтобы видеть, что чему подобно.
Найдем коэффициент подобия
- то и есть коэффициент подобия этих треуг.
AB тут выступает в роли гипотенузы треугольник ABH, надеюсь это понятно.
теперь остается найти высоту
как-то так
Так как в условии не указано, к какой из сторон проведена высота, то возможны ТРИ случая ( так как в треугольнике три стороны.
Площадь треугольника равна S = (1/2)*a*h, где h - высота треугольника, а - сторона, к которой проведена высота.
1) S = (1/2)*85*36 = 1530 см².
2) S = (1/2)*60*36 = 1080 см².
3) Найдем третью сторону треугольника из двух прямоугольных треугольников, на которые делит данный треугольник высота, проведенная к третьей стороне.
По Пифагору одна часть третьей стороны равна √(85²-36²) = 77 см.
Вторая часть третьей стороны равна √(60²-36²) \= 48 см.
Третья сторона равна 77+48 = 125 см. Тогда
S = (1/2)*125*36 = 2250 см².
ответ: S1 = 1530см², S2 = 1080см², S3 = 2250см².