А) BD ищется из треугольника ABD по теореме Пифагора: BD^2 = AB^2 + AD^2, откуда BD = 13 см.
Б) проведём высоту CH к основанию AD. Тогда ABCH - прямоугольник, AH = BC и CH = AB = 5 см. Треугольник CDH - прямоугольный с прямым углом CHD. Причём так как угол D равен 45 градусам, то угол DCH = 45 градусов в силу того, что сумма острых углов прямоугольного треугольника равна 90 градусам. Значит, треугольник CDH - равнобедренный. CH = DH = 5 см. Ищем CD по теореме Пифагора: CD^2 = CH^2 + DH^2, откуда CD = 5*sqrt(2) см. (Sqrt - это квадратный корень).
3) Треугольник ACH прямоугольный с прямым углом AHC. AH = AD - DH = 12 - 5 = 7 см. Ищем AC по теореме Пифагора: AC^2 = AH^2 + CH^2, откуда AC = sqrt(74) см.
BD^2 = AB^2 + AD^2, откуда BD = 13 см.
Б) проведём высоту CH к основанию AD. Тогда ABCH - прямоугольник, AH = BC и CH = AB = 5 см.
Треугольник CDH - прямоугольный с прямым углом CHD.
Причём так как угол D равен 45 градусам, то угол DCH = 45 градусов в силу того, что сумма острых углов прямоугольного треугольника равна 90 градусам.
Значит, треугольник CDH - равнобедренный. CH = DH = 5 см.
Ищем CD по теореме Пифагора:
CD^2 = CH^2 + DH^2, откуда CD = 5*sqrt(2) см. (Sqrt - это квадратный корень).
3) Треугольник ACH прямоугольный с прямым углом AHC.
AH = AD - DH = 12 - 5 = 7 см.
Ищем AC по теореме Пифагора:
AC^2 = AH^2 + CH^2, откуда AC = sqrt(74) см.
Объяснение:
1) Площадь прямоугольника находится по формуле S=a*b где a, и b - стороны прямоугольника.
если одна сторона MN= 2, то вторую обозначим за x и подставим в формулу:
12=2*x
x=6 (это вторая сторона)
Периметр прямоугольника находится по формуле:
P= (a+b)*2
подставляем:
P= (2+6)*2 = 8*2=16.
2) (Что тут нужно найти? сторону?)
Одна сторона = x
Вторая = 3x
P= 16
подставляем в вышеуказанную формулу нахождения периметра:
16=(3x+x)*2
16=8x
x=16/8=2
подставляем:
Одна сторона = 2
Вторая = 3*2=6
3) Острый угол равен 50° =>
по «сумма 2-х боковых углов параллелограмма равна 180°»
тупой угол равен 180°-50°=130°
в следующий раз, если много заданий - ставьте большее кол-во