Рассмотрим треугольники OMK и МFО ( FO — расстояние от точки О до прямой МN). Угол ОКМ = 90 градусов, угол ОFМ = 90 градусам ( т. к. расстояние от точки до прямой — это перпендикуляр). Гипотенуза ОМ — общая у обоих треугольников, угол FМО = углу ОМК (т. к. МH — биссектриса угла М, т. Н принадлежит прямой NР). Следовательно, треугольники OMK и МFО равны по признаку равенства прямоугольных треугольников ( если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны). Следовательно, OF = OK = 9 см., т. е. расстояние от точки О до прямой МN = 9 см. ответ: расстояние от точки О до прямой МN = 9 см
Угол ОКМ = 90 градусов, угол ОFМ = 90 градусам ( т. к. расстояние от точки до прямой — это перпендикуляр). Гипотенуза ОМ — общая у обоих треугольников, угол FМО = углу ОМК (т. к. МH — биссектриса угла М, т. Н принадлежит прямой NР).
Следовательно, треугольники OMK и МFО равны по признаку равенства прямоугольных треугольников ( если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны).
Следовательно, OF = OK = 9 см., т. е. расстояние от точки О до прямой МN = 9 см.
ответ: расстояние от точки О до прямой МN = 9 см
1) угол А = С= 45° (по условию) Т.к. углы при основании равны, то этот треугольник равнобедренный. Следовательно, АВ=АС=4 √ 6.
2) Найдем угол В:
Угол В = 180° - угол С - угол А
Угол В = 180° - 45° - 45°
Угол В = 90°
Следовательно, треугольник АВС прямоугольный и равнобедренный.
3) Из треугольника АВС, где угол В = 90°
По теореме Пифагора следует:
АС² = АВ² + ВС²
АС² = (4 √ 6)² + (4 √ 6)²
АС² = 16×6 +16×6
АС² = 96 + 96
АС² = 192
АС = √ 192
√ 192 = √ 4 × √ 16 × √ 3 = 2×4× √ 3 = 8 √ 3
ответ: 4 √ 6; 90°; 8 √ 3