Пусть x — угол при основании, другой угол при основании тоже х, тогда угол между боковыми сторонами — 3х. Всего получается 5х. Так как сумма углов треугольника равна 180 градусов, тогда составляем уравнение.
5х=180 х=180:5 х=36 градусов
Угол при основании равен 36 градусов, соответственно, равный ему угол при основании тоже 36 градусов. Угол между боковыми сторонами равен 3х, значит 3 умножить на 36 и это равно 108 градусов. ответ: Углы при основании по 36 градусов, угол между боковыми сторонами 108 градусов.
построим прямую OA от точки O до прямой MH так что угол OAM = 90 градусов,
это и есть расстояние от точки O до прямой MН
Треугольники MOA и MOK равны это следует из следующего :
1 в треуг ОАМ угол OAM = 90 гр
в треуг OMK угол OKM = 90 гр
2 угол АMO = углу KMO (биссектриса угла)
3 сторона треугольника MO общая для обоих треугольников
4 также угол MOA и угол MOK в обоих треуг. равны, поскольку
сумма углов в треуг. = 180 гр. ( вычитая 180 - 90 гр - известный угол)
Этих условий достаточно чтобы сделать вывод, что треугольники равны.
Следовательно OK = OA = 9
ответ 9
5х=180
х=180:5
х=36 градусов
Угол при основании равен 36 градусов, соответственно, равный ему угол при основании тоже 36 градусов. Угол между боковыми сторонами равен 3х, значит 3 умножить на 36 и это равно 108 градусов.
ответ: Углы при основании по 36 градусов, угол между боковыми сторонами 108 градусов.