Нужно 1. даны точки: а(1; -1), в(3; 1), с(0; -2) постройте на четырёх различных чертежах: а) отрезок а(1)в(1), симметричный отрезку ав относительно точки с; б) отрезок а(2)с(2), симметричный отрезку ас относительно оси ав; в) отрезок а(3)в(3), который получается при параллельном переносе отрезка ав на вектор ас; г) отрезок а(4)с(4), который получается при повторе отрезка ас вокруг точки в но 90градусов против часовой стрелки. укажите координаты точек а(1),в(1),а(2),с(2),а(3),в(3),а(4),с(4). 2. каким условиями должны удовлетворять два равносторонних треугольника, чтобы один из них можно было получить из другого при параллельного переноса? 3. докажите, что при повороте квадрата вокруг точки пересечения его диагоналей на 270градусов квадрат отображается на себя.
На произвольной прямой откладываем длину АВ заданной стороны.
От т.А как от вершины откладываем с циркуля и линейки данный угол. (Как это делается - есть во многих источниках стандартный).
Т.к. центр вписанной в угол окружности лежит на его биссектрисе, проведем ее ( тоже стандартный деления угла на два равных).
В произвольной точке М на АВ возведем перпендикуляр, на нем отложим длину MP = r радиуса вписанной окружности.
Из т.Р проведем прямую параллельно МА до пересечения с биссектрисой в т.О.
Точка О - центр вписанной окружности, её радиус будет равен заданному и перпендикулярен АВ.
Соединим т.В с т.О.
На ОВ как на диаметре построим окружность радиусом ВО:2. ( как делить отрезок пополам мы помним).
Точки пересечения этой окружности с данной - точки касания касательных. Та, что вне угла, нас не интересует.
Соединим В и найденную точку касания и продолжим ее до пересечения со второй стороной угла. в т.С.
Треугольник построен.
Построим отрезок AB, равный периметру P. Из точек A и B под известными углами проведём лучи до пересечения в точке C.
На прямой AB от точки A отложим отрезок AA1, равный AC, от точки B отложим отрезок BB1, равный BC.
Теперь, как и в первый раз построим треугольник по известным углам, но уже на основании A1B1, лучи пересекутся в точке O.
Дальше соединим вершину O с точками A и B. Затем на стороне OA1 от точки O отложим отрезок, равный AC, на стороне OB1 от точки O отложим отрезок, равный BC.
Получившийся треугольник A2OB2 равен треугольнику ACB по двум сторонам и углу между ними. Его основание разбито отрезками OA и OB на отрезки A2M, MK и KB2, пропорциональные сторонам треугольника ACB.
На основании MK по трём сторонам построим треугольник MFK (в качестве двух недостающих сторон возьмём A2M и KB2).
Стороны получившегося треугольника пропорциональны сторонам треугольника ACB, значит, они подобны, значит их соответствующие углы равны, а его периметр равен P. Значит, это искомый треугольник.