1. Треугольники АВС и MBN подобны по двум углам
(угол В- общий; Угол ВМN равен углу ВАС как соответственные при МN||АС и секущей АВ)
Треугольники подобны⇒сходственные стороны пропорциональны
АВ/ВМ=СВ/ВN ⇒AB•BN = СВ•ВМ
Б) АВ=АМ+МВ=6+8=14
МN/АС= ВМ/АВ; МN/21=8/14, МN=21·8/14=12 (см)
ответ МN=12см
2. Треугольники PQR и АВС подобны, т.к. стороны пропорциональны :
16/12=20/15=28/21=4/3
Площади подобных тругольников относятся как квадрат коэффициента подобия, т.е. как (4/3)²=16/9
площадь треугольника PQR относится к площади треугольника ABC
как 16 : 9
Подробнее - на -
коэффициент подобия k =a₁/a₂ >0 .
(a₁/a₂)² =S₁/S₂ ⇒a₁=a₂*√(S₁/S₂) =9*√(75/300) =9*√(1/4) =9 /2 =4,5 (см).
Задание 4.
k = (a₁/a₂) =6 см / 4 см = 3/2 ; S₁+S₂ =78 ;
{ S₁+S₂ =78 ;S₁/S₂ =(3/2)² . ⇔ { (S₁/S₂ +1)*S₂ =78 ;S₁/S₂ =9/4. ⇔
{ (9/4 +1)*S₂ =78 ; S₁ =(9/4) *S₂. ⇔ { (13/4)*S₂ =78 ;S₁ =(9/4)*S₂ ⇔ { S₁ =(9/4)*24 ; S₂ =24 .⇔ { S₁ =54 (см²) ; S₂ =24 (см²).
Задание 5.
k =√ (S₁/S₂) = √ (25/100) =√ (1/4) =1/2.
a₁/a₂ =k ⇔a₁ =k*a₂ =(1/2)*6 см =3 см и b₁ =k*b₂ =(1/2)*10 =5 см.
Задание 6.
Все равносторонние треугольники подобны
k² = (a₂/a₁)² = S₁/S₂ ⇒a₂ = a₁*√(S₁/S₂) =1* √ 3.
a₂ =√ 3..
1. Треугольники АВС и MBN подобны по двум углам
(угол В- общий; Угол ВМN равен углу ВАС как соответственные при МN||АС и секущей АВ)
Треугольники подобны⇒сходственные стороны пропорциональны
АВ/ВМ=СВ/ВN ⇒AB•BN = СВ•ВМ
Б) АВ=АМ+МВ=6+8=14
МN/АС= ВМ/АВ; МN/21=8/14, МN=21·8/14=12 (см)
ответ МN=12см
2. Треугольники PQR и АВС подобны, т.к. стороны пропорциональны :
16/12=20/15=28/21=4/3
Площади подобных тругольников относятся как квадрат коэффициента подобия, т.е. как (4/3)²=16/9
площадь треугольника PQR относится к площади треугольника ABC
как 16 : 9
Подробнее - на -