Итак, рисунок готов. Задача совсем простая, сейчас увидите, почему. По условию нам дана прямая призма. А что это? Это призма, боковые рёбра которой перпендикулярны плоскости оснований. Требуется найти площадь полной поверхности призмы при всех известных данных. Как же это сделать? Вы уже знаете, что площадь боковой поверхности многогранника - это сумма площадей лишь боковых граней многогранника. Тогда по названию площади полной поверхности нетрудно догадаться, что это сумма площадей ВСЕХ граней многогранника. Вот нам и надо найти эту сумму. Все грани призмы - прямоугольники, площадь их считается одинаково - это произведение его смежных сторон. Кстати сказать, мы уже знаем все эти стороны! Самое время посчитать площадь. Нам надо найти сумму площадей всех 6 граней призмы. Начнём с оснований. 1)S1 = 6 * 5.5 = 33 см^2 Кстати сказать, площадь S1 имеют оба основания, поскольку это равные прямоугольники. 2)Посчитаем площадь прямоугольника передней грани, она равна площади прямоугольника задней грани(это равные прямоугольники): S2 = 12 * 6 = 72 см^2 3)Посчитаем площадь боковой грани призмы(аналогично, оба параллельных прямоугольника равны): S3 = 12 * 5.5 = 66 Тогда Sп = 2S1 + 2S2 + 2S3 = 2(S1 + S2 + S3) = 2(33 + 72 + 66) = 2 * 171 = 342 см^2. Это и есть площадь полной поверхности.
Высота проведена к большему основанию. У нас получился прямоугольный треугольник, две стороны нам известны, находим третью по теореме Пифагора: 5²-4²=х² х²=25-16=9 х=3 Проводим высоту из второй вершины к этому же основанию.У нас получается два прямоугольных треугольника. Так трапеция равнобедренная, то гипотенузы равны Высоты одной трапеции равны, следовательно, у нас есть равные катеты Треугольники равны по гипотенузе и катету, значит, неизвестная сторона второго треугольника тоже равна 3 После проведения двух высот у нас получился квадрат, сторона которого равна меньшему основанию.Находим её: 10-3-3=4 Средняя линия равна полусумме оснований: (10+4)/2=7 Площадь трапеции равна полусумме оснований на высоту (10+4)/2 х4=28
По условию нам дана прямая призма. А что это? Это призма, боковые рёбра которой перпендикулярны плоскости оснований. Требуется найти площадь полной поверхности призмы при всех известных данных. Как же это сделать?
Вы уже знаете, что площадь боковой поверхности многогранника - это сумма площадей лишь боковых граней многогранника. Тогда по названию площади полной поверхности нетрудно догадаться, что это сумма площадей ВСЕХ граней многогранника. Вот нам и надо найти эту сумму.
Все грани призмы - прямоугольники, площадь их считается одинаково - это произведение его смежных сторон. Кстати сказать, мы уже знаем все эти стороны! Самое время посчитать площадь.
Нам надо найти сумму площадей всех 6 граней призмы. Начнём с оснований.
1)S1 = 6 * 5.5 = 33 см^2
Кстати сказать, площадь S1 имеют оба основания, поскольку это равные прямоугольники.
2)Посчитаем площадь прямоугольника передней грани, она равна площади прямоугольника задней грани(это равные прямоугольники):
S2 = 12 * 6 = 72 см^2
3)Посчитаем площадь боковой грани призмы(аналогично, оба параллельных прямоугольника равны):
S3 = 12 * 5.5 = 66
Тогда Sп = 2S1 + 2S2 + 2S3 = 2(S1 + S2 + S3) = 2(33 + 72 + 66) = 2 * 171 = 342 см^2.
Это и есть площадь полной поверхности.
У нас получился прямоугольный треугольник, две стороны нам известны, находим третью по теореме Пифагора:
5²-4²=х²
х²=25-16=9
х=3
Проводим высоту из второй вершины к этому же основанию.У нас получается два прямоугольных треугольника.
Так трапеция равнобедренная, то гипотенузы равны
Высоты одной трапеции равны, следовательно, у нас есть равные катеты
Треугольники равны по гипотенузе и катету, значит, неизвестная сторона второго треугольника тоже равна 3
После проведения двух высот у нас получился квадрат, сторона которого равна меньшему основанию.Находим её: 10-3-3=4
Средняя линия равна полусумме оснований:
(10+4)/2=7
Площадь трапеции равна полусумме оснований на высоту
(10+4)/2 х4=28