Ра́диус (лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы), а также длина этого отрезка. Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая. Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину. Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы). Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).
Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая.
Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину.
Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы).
Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).
Пусть А - начало координат
Ось Х - АВ
Ось Y - AD
Ось Z - AA1
Координаты точек
А1 (0;0;1)
B1 (1;0;1)
D1(0;1;1)
C1(1;1;1)
B(1;0;0)
Уравнение плоскости АВ1D1
- проходит через начало координат
ax+by+cz=0
Подставляем координаты точек
B1 D1
a+c=0
b+c=0
Пусть с = -1 тогда а =1 b =1
x+y-z=0
Уравнение плоскости ВА1С1
ax+by+cz+d=0
Подставляем координаты точек
В А1 С1
а+d = 0
c+ d = 0
a+b+c+d= 0
Пусть d = -1 тогда а=1 c=1 b= -1
x-y+z-1=0
Косинус искомого угла между плоскостями равен
| (1;1;-1) * (1;-1;1) | / | (1;1;-1) | / | (1;-1;1) | = | 1-1-1 | / √3 / √3 = 1/3
Угол arccos (1/3)