Проведём отрезок из точки В в точку С под прямым углом. угол САD=90-60=30° сторона лежащая против угла в 30° равна половине гипатенузы, следовательно ВС=8/2=4(см) теперь по теореме Пифагора(т.к. мы сделали прямоугольный треугольник) АС²=АВ²+ВС² сейчас выражаем катет АВ из данной формулы: АВ²=АС²-ВС² АВ²=8²-4²=64-16=48 АВ=√48=4√3(см) проведём также отрезок СD к плоскости под прямым углом, и получим прямоугольник ABCD, где все углы равны 90°, и по свойствам прямоугольников противолежащие стороны равны, ВС=AD=4(см) ответ:длина перпендикуляра АВ= 4√3 см, а длина проекции АD=4 см. (фото чертежа прикрепил)
У задачи два варианта решения, соответственно, есть два варианта ответов.
Так как в условии не указано, пересекаются ли биссектрисы,
Вариант 1)
Биссектрисы не пересекаются. По условию ВК=КF=FC
Угол ВКА=углу КАD - накрестлежащие.
Угол КАD=КАВ по условию. ⇒
Углы при основании АК треугольника АВК равны, ∆ АВК равнобедренный, АВ=ВК. Аналогично доказывается СD=CF.
Примем 1/3 ВС=а
Тогда АВ=CD=a, BC=AD=3a
P=8a
8a=88 см
a=11 см ⇒
AB=CD=11см
BC=AD=33 см
Вариант 2)
Биссектрисы пересекаются. По условию ВF=FK=KC
В треугольнике АВК угол ВКА=углу КАD – накрестлежащие.
Угол КАD=КАВ по условию. Углы при основании АК треугольника АВК равны,⇒
∆ АВК равнобедренный, АВ=ВК. Аналогично доказывается СD=CF.
Пусть 1/3 ВС=а
Тогда АВ=СD=2a, BC=AD=3a
P=AB+BC+CD+DA=10a
10а=88
а=8,8 см⇒
АВ=CD=17,6 см
BC=AD=26,4
угол САD=90-60=30°
сторона лежащая против угла в 30° равна половине гипатенузы, следовательно ВС=8/2=4(см)
теперь по теореме Пифагора(т.к. мы сделали прямоугольный треугольник)
АС²=АВ²+ВС²
сейчас выражаем катет АВ из данной формулы:
АВ²=АС²-ВС²
АВ²=8²-4²=64-16=48
АВ=√48=4√3(см)
проведём также отрезок СD к плоскости под прямым углом, и получим прямоугольник ABCD, где все углы равны 90°, и по свойствам прямоугольников противолежащие стороны равны, ВС=AD=4(см)
ответ:длина перпендикуляра АВ= 4√3 см, а длина проекции АD=4 см.
(фото чертежа прикрепил)