Из рис.1 видим, что BD-биссектриса, значит ∠ADB=∠BDC. А ∠CBD=∠ADB как вертикальные. Поэтому углы BDC и CBD равны между собой. Значит треугольник BCD-равнобедренный, то есть BC=CD. Аналогично показываем, что АВ=ВС. Таким образом три стороны трапеции равны между собой.
Если за О обозначить точку пересечения диагоналей, то из рис.2 видим, что треугольники ВОС и DOA подобны (по трем углам). Причем коэффичиент подобия равен 5/13.
Обозначим за 5х - длинну основания ВС и 13х - длинну основания AD. Найдем, чему равняется KD. KD=(AD-BC)/2=(13x-5x)/2=4x.
По теореме Пифагора в прямоугольном треугольнике KCD: KD²+CK²=CD². CK - это высота трапеции, а CD=BC=5х. Тогда имеем: (4х)²+90²=(5х)² , 8100=9х², 900=х², х=30(см).
Значит ВС=5*30=150(см), а AD=13*30=390(см). Площадь трапеции равна S=h*(BC+AD)/2=90*(150+390)/2=90*270=24300(см²)
Треугольник в основании пирамиды - прямоугольный. Это следует из соотношения квадратов его сторон по Пифагору: 6² + 8² = 36 + 64 = 100, 10² = 100. Если все боковые рёбра равны, то ось пирамиды вертикальна и проходит через середину гипотенузы основания пирамиды. Это вытекает из равенства проекций боковых рёбер пирамиды на её основание. Точка в прямоугольном треугольнике, равноудалённая от его вершин, находится в середине гипотенузы. Отсюда находим высоту пирамиды: Н = √(13² - (10/2)²) = √(169 - 25) = √144 = 12.
Аналогично показываем, что АВ=ВС. Таким образом три стороны трапеции равны между собой.
Если за О обозначить точку пересечения диагоналей, то из рис.2 видим, что треугольники ВОС и DOA подобны (по трем углам). Причем коэффичиент подобия равен 5/13.
Обозначим за 5х - длинну основания ВС и 13х - длинну основания AD. Найдем, чему равняется KD. KD=(AD-BC)/2=(13x-5x)/2=4x.
По теореме Пифагора в прямоугольном треугольнике KCD: KD²+CK²=CD². CK - это высота трапеции, а CD=BC=5х. Тогда имеем: (4х)²+90²=(5х)² , 8100=9х², 900=х², х=30(см).
Значит ВС=5*30=150(см), а AD=13*30=390(см).
Площадь трапеции равна
S=h*(BC+AD)/2=90*(150+390)/2=90*270=24300(см²)
Это следует из соотношения квадратов его сторон по Пифагору:
6² + 8² = 36 + 64 = 100,
10² = 100.
Если все боковые рёбра равны, то ось пирамиды вертикальна и проходит через середину гипотенузы основания пирамиды.
Это вытекает из равенства проекций боковых рёбер пирамиды на её основание. Точка в прямоугольном треугольнике, равноудалённая от его вершин, находится в середине гипотенузы.
Отсюда находим высоту пирамиды:
Н = √(13² - (10/2)²) = √(169 - 25) = √144 = 12.