Я думаю, задание надо читать так: В основании пирамиды лежит прямоугольник со сторонОЙ 6 см.Основанием высоты пирамиды является центр описанной окружности с радиусом 5 см.Найдите объем пирамиды, если ее высота равна 9 см. Тогда решение следующее: Vпир.=1/3Sосн.*h (одна третья площади основания пирамиды на высоту пирамиды). Чтобы найти площадь основания, надо найти вторую сторону прямоугольника. По т. Пифагора АВ²=АС²-ВС² АС=d=2c=10см. АВ²=100-36=64⇒АВ=√64=8см. S осн.=АВ*ВС=6*8=48см² Vпир.=1/3*Sосн*h=1/3*48*9=144cм³
Медиана из вершины треголника делит противоположную сторону (основание) пополам. Высота из этого же угла перпендикулярна основанию. Треугольники, образовавшиеся при проведении высоты и медианы прямоугольные. У этих треугольников катеты образованные высотой и медианой равны. Катеты образованные делением основания медианой то же равны. Если катеты одного треугольника равны катетам другого треугольника, то такие треугольники равны. А значит боковые стороны исходного треугольника равны. Исходный треугольник равнобедренный.
Vпир.=1/3Sосн.*h (одна третья площади основания пирамиды на высоту пирамиды).
Чтобы найти площадь основания, надо найти вторую сторону прямоугольника. По т. Пифагора АВ²=АС²-ВС² АС=d=2c=10см.
АВ²=100-36=64⇒АВ=√64=8см.
S осн.=АВ*ВС=6*8=48см²
Vпир.=1/3*Sосн*h=1/3*48*9=144cм³