Из условия известно, что в треугольнике ABC стороны АС и BC равны. Внешний угол при вершине В равен 100°. Для того, чтобы найти угол С давайте рассуждать.
Первое, что мы можем сделать — это найти угол B. В этом нам свойство внешних углов. Сумма смежных углов равна 180°.
180° - 100° = 80°.
Из условия известно, что стороны AC и BC равны (треугольник равнобедренный), то и углы A и B равны.
То есть угол А равен углу В и равен 80°.
Далее используем теорему о сумме углов треугольника.
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
Из условия известно, что в треугольнике ABC стороны АС и BC равны. Внешний угол при вершине В равен 100°. Для того, чтобы найти угол С давайте рассуждать.
Первое, что мы можем сделать — это найти угол B. В этом нам свойство внешних углов. Сумма смежных углов равна 180°.
180° - 100° = 80°.
Из условия известно, что стороны AC и BC равны (треугольник равнобедренный), то и углы A и B равны.
То есть угол А равен углу В и равен 80°.
Далее используем теорему о сумме углов треугольника.
180° - 80° * 2 = 20°, итак, угол C = 20°.
ответ: угол С равен 20°.
3√3/2 см.
Объяснение:
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
4. S = 1/2ab,
S = 1/2• c • h, тогда
1/2•a•b = 1/2• c • h,
ab = ch,
h = (ab)/c = (3•3√3)/6 = 3√3/2 (см).