дано: авс- равнобедренный треугольник.
ам- медиана.(18.4)
р треугольника авм=79.2
найти: р треугольника авс
решение:
ам является и бессектрисой и медианой и высотой (свойства равнобедренного треугольника.)
следовательно: угол а делиться пополам (так как ам является бессектрисой.) следовательно эти половинки ровны.
ам-общая сторона.
ва=ас (по условию так как треугольник авс равнобедренный.)
следовательно треугольники авм=амс (по 1 признаку.)
следовательно р треугольника авс равен.
(79.2-18.4)• 2
все готово
дано: авс- равнобедренный треугольник.
ам- медиана.(18.4)
р треугольника авм=79.2
найти: р треугольника авс
решение:
ам является и бессектрисой и медианой и высотой (свойства равнобедренного треугольника.)
следовательно: угол а делиться пополам (так как ам является бессектрисой.) следовательно эти половинки ровны.
ам-общая сторона.
ва=ас (по условию так как треугольник авс равнобедренный.)
следовательно треугольники авм=амс (по 1 признаку.)
следовательно р треугольника авс равен.
(79.2-18.4)• 2
все готово
Sтреугольника = 0.5 * 6 * DE * √3/2 = 3√3/2 * DE
по т.косинусов: (2√7)² = 6² + DE² - 2*6*DE*cos(60°)
28 = 36 + DE² - 6*DE
DE² - 6*DE + 8 = 0
по т.Виета DE = 2 или DE = 4
самая большая сторона треугольника =6: 2√7 = √28 < √36 = 6
следовательно, угол CED -тупой, cos(CED) < 0
если DE=2:
по т.синусов: 36 = 28 + 4 - 2*2√7*2*cos(CED)
4 = -8√7*cos(CED) ---> cos(CED) = -1/(2√7) < 0
если DE=4:
по т.синусов: 36 = 28 + 16 - 2*2√7*4*cos(CED)
-8 = -16√7*cos(CED) ---> cos(CED) = +1/(2√7) > 0 (противоречит условию) ---> DE=2
Sтреугольника = 3√3