ABCD-равнобед трапеция. Диагональ делит ее на два треуг-ка, средняя линия трапеции есть средние линии этих треугольников. В одном она равна x, значит основание одно 2x, в другом x+8, значит второе основание 2x+16. Если из тупых углов опустить высоты к большему основанию , то то они отсекут от него по 8 см с каждой стороны. Р/м треугольник, у которого 8см это катет, в высота второй катет, а гипотенуза-боковая сторона трапеции. Один угол 90, другой при основании 60, значит третий 30, напротив него сторона равная 8, значит гипотенуза равна 16. Р=2x+16+16+2x+16=72; 4x=24;x=6. Большее основание =2x6+16=12+16=28
В прямоугольном параллелограмме квадрат ее диагонали равен сумме квадратов длин ее сторон.
А1С2 = АА12 + АД2 + СД2.
АА12 = А1С2 – АД2+ СД2 = 676 – 64 – 36 = 576.
АА1 = 24 см.
ответ: Боковое ребро равно 24 см.
второй
ABCDA1B1C1D1 - параллелепипед
1) основание ABCD:
в треугольнике АВС
L B = 90 град.
AB = 6 см
BC = 8 см =>
AC^2 = AB^2 + BC^2 = 6^2 + 8^2 = 100 = 10^2 =>
AC = 10 см - диагональ основания
2) В треугольнике ACC1:
L ACC1 = 90 град.
AC = 10 см
AC1 = 26 см =>
CC1 = AC1^2 - AC^2 =
= 26^2 - 10^2 =
= (26+10)(26-10) =
= 36*16 = 6^2 * 4^2 =
= (6*4)^2 = 24^2 =>
CC1 = 24 см - высота параллелепипеда