Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
1)Дано: ∆АВС - равнобедренный.
∠В = 96°
Найти:
∠А, ∠С.
У равнобедренного треугольника углы при основании равны.
оба угла не могут быть по 96°, так как сумма углов треугольника равна 180°
Поэтому ∠В = 96°
180 - 96 = 84° - сумма углов при основании. (На рисунке углы при основании А и С)
Так как ∠А = ∠С => ∠А = ∠С = 84 ÷ 2 = 42°
ответ: 42°, 42°.
2) Дано:
∆CDE
∠E = 32°
CF - биссектриса.
∠CFD = 72°
Найти:
∠D
Сумма смежных углов равна 180°
∠CFD смежный с ∠CFE => ∠CFE = 180 - 72 = 108°
Сумма углов треугольника равна 180°
=> ЕCF = 180 - (108 + 32) = 40°
Так как СF - биссектриса => ∠С = 40 × 2 = 80°
Сумма углов треугольника равна 180°
=> ∠D = 180 - (32 + 80) = 68°
ответ: 68°
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301