О нүктесі центрі болатын шеңбер АВСД теңбүйрлі трапециясына іштей сығылған және оның СД бүйір қабырғасымен к нүктесінде жанасады. СК= 1 см КД= 4 см екені белгілі болса трапецияның ауданын тап.
Если диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а", то основание (гипотенуза) этого треугольника - диагональ квадрата основания пирамиды равно а√2. Высота пирамиды - это высота равнобедренного прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а. Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания Р = 4а. Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды: Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) = = a³/3√2.
2. Сформулируйте теоремы, обратные к приведенным ниже. Проверьте, будет
ли верным утверждение, составляющее его содержание.
1) Два перпендикуляра к одной прямой не пересекаются.
2) Если два треугольника равны, то равны и их соответствующие стороны.
3) Если смежные углы равны, то они прямые.
4) Две прямые параллельные порознь третьей, параллельны.
Объяснение:
2. Сформулируйте теоремы, обратные к приведенным ниже. Проверьте, будет
ли верным утверждение, составляющее его содержание.
1) Два перпендикуляра к одной прямой не пересекаются.
2) Если два треугольника равны, то равны и их соответствующие стороны.
3) Если смежные углы равны, то они прямые.
4) Две прямые параллельные порознь третьей, параллельны.
Высота пирамиды - это высота равнобедренного
прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а.
Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания
Р = 4а.
Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды:
Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) =
= a³/3√2.