В этом тетраэдре грани ABD=CBD по двум катетам (АВ=СВ по условию, DB-общий, а угол В у них прямой).
Строим сечение. Точка Е-середина ребра DB. Сечение проходит параллельно плоскости ADC. Канты AD и CD принадлежат этой плоскости, значит сечение будет параллельно этим кантам. Возьмем грань CBD. Прямая, по которой будет проходить сечение, параллельна CD и проходит через середину DB (точку Е), будет средней линией для треуг. CBD. Значит на середине канта СВ отмечаем точку К и проводим прямую ЕК. Аналогично для грани ABD. Точка М - середина канта АВ. МЕК - искомое сечение. МЕК - равнобедренный треуг. МЕ=ЕК. МК - средняя линия для треуг. АВС. МК=АС/2=12/2=6
ЕК=√(КВ^2+EB^2), КВ=ВС/2=8/2=4, ЕВ=DB/2=6/2=3.
ЕК=√(16+9)=5, МЕ=ЕК=5, МК=6.
В треуг. МЕК проведем высоту ЕО (она же и медиана).
Построить легко. Обозначь середину отрезка DC точкой любой к примеру Z. Проведи линию из точки Z к середине отрезка MC. Обозначть ее также к примеру U. от этих двух точек проведи линии к середине отрезка BC. Обозначь к примеру эту точку, как L. У нас получился треугольник ZUL подобный треугольнику DMB. А так как эти линии которые мы проводили, были проведены из середины BC, DC и MC, то они будут относиться к линиям треугольника DMB, как 1:2, то есть в два раза меньше. Слеовательно ZU=5, ZL=3. Угол ZUL = 90. ZU гипотенуза треугольника ZUL, ZL один из его катетов, следовательно UL = 4 (египетский треугольник). S=½(ah)=½(4*3)=6 см².
В этом тетраэдре грани ABD=CBD по двум катетам (АВ=СВ по условию, DB-общий, а угол В у них прямой).
Строим сечение. Точка Е-середина ребра DB. Сечение проходит параллельно плоскости ADC. Канты AD и CD принадлежат этой плоскости, значит сечение будет параллельно этим кантам. Возьмем грань CBD. Прямая, по которой будет проходить сечение, параллельна CD и проходит через середину DB (точку Е), будет средней линией для треуг. CBD. Значит на середине канта СВ отмечаем точку К и проводим прямую ЕК. Аналогично для грани ABD. Точка М - середина канта АВ. МЕК - искомое сечение. МЕК - равнобедренный треуг. МЕ=ЕК. МК - средняя линия для треуг. АВС. МК=АС/2=12/2=6
ЕК=√(КВ^2+EB^2), КВ=ВС/2=8/2=4, ЕВ=DB/2=6/2=3.
ЕК=√(16+9)=5, МЕ=ЕК=5, МК=6.
В треуг. МЕК проведем высоту ЕО (она же и медиана).
МО=ОК=МК/2=6/2=3
ЕО=√(25-9)=4
S(сечения МЕК)=1/2*ЕО*ОК=1/2*4*3=6
ответ: 6
Построить легко. Обозначь середину отрезка DC точкой любой к примеру Z. Проведи линию из точки Z к середине отрезка MC. Обозначть ее также к примеру U. от этих двух точек проведи линии к середине отрезка BC. Обозначь к примеру эту точку, как L. У нас получился треугольник ZUL подобный треугольнику DMB. А так как эти линии которые мы проводили, были проведены из середины BC, DC и MC, то они будут относиться к линиям треугольника DMB, как 1:2, то есть в два раза меньше. Слеовательно ZU=5, ZL=3. Угол ZUL = 90. ZU гипотенуза треугольника ZUL, ZL один из его катетов, следовательно UL = 4 (египетский треугольник). S=½(ah)=½(4*3)=6 см².