Пусть ad = a1d1 — равные биссектрисы, ∠a = ∠a1, ac = a1c1 — равные стороны. в δаdс = δa1d1c1: ∠dac = ∠d1a1c1 (т.к. ∠dac половина угла ∠bac ∠dac = ∠bac : 2 = ∠b1a1c1 : 2 = ∠d1a1c1). ad = a1d1, ас = а1с1. (по условию: ad = a1d1 — равные биссектрисы, aс = a1c1 — равные прилежащие стороны). таким образом, δadc = δа1d1c1 по 1-му признаку равенства треугольников, откуда ∠с = ∠с1 как лежащие против равных сторон в равных треугольниках) в δabcи δа1в1с1: ас = а1с1, ∠а = ∠а1 (по условию) ∠с = ∠с1. таким образом, δabc = δа1в1с1 по 1-му признаку равенства треугольников, что и требовалось доказать.
Если третья сторона будет=1 см, то не получится неравенство: 1см+1см= 2 см, тогда 3см>2 см, а должно быть<. Если третья сторона = 2 см, то неравенство опять не получится: 2+1=3, тогда 3=3, так тоже не может быть, т.к. одна из сторон треугольника должна быть меньше суммы двух других сторон. Если третья сторона =3 см, тогда 1+3=4, 3<4, неравенство выполняется, 3+3=6, 3<6- неравенство получается. Возьмем 4 см: 3+1=4, 4=4- не получается, значит и в последующих числах не получится. ответ: 3 см