X, Y - центры окружностей ACD и ABE; O - центр окружности ABC
△XTO~△ABC (∠A =внешнему ∠T =∠X; проекции сторон XT и XO пропорциональны сторонам AB и AC)
Параллелограмм OXTY составлен из двух треугольников, подобных ABC => угол между его диагоналями, то есть между линией центров XY и AO не зависит от выбора точки D.
Общая хорда AH перпендикулярна линии центров => угол хорды AH и положение точки G не зависят от выбора точки D.
6. DB = 13см
Объяснение:
#5
∆ЕОМ = ∆КОМ по 1 признаку (ЕО=ОК; ЕМ=КМ; <ЕОМ= <КОМ) => <ОМЕ = <КМО (как соответствующие элементы)
∆ЕСМ = ∆КСМ по 1 признаку (ЕМ=КМ; СМ- общая; <ЕМС = <КМС)
Что и требовалось доказать
#6
1) Из чертежа мы видим, что <ОАВ = <ОВА => ∆ОАВ - р/б => ОА=ОВ
Раз <САВ = <DBA и <ОАВ = <ОВА => <САО= <DBO
∆САО = ∆DBO по 2 признаку (АО=ОВ; <САО = <DBO; <СОА = <DOВ как вертикальные)
Что и требовалось доказать
2) Из доказанного выше: ∆САО = ∆DBO => CA=DB (как соответствующие элементы) => DB=13см
X, Y - центры окружностей ACD и ABE; O - центр окружности ABC
△XTO~△ABC (∠A =внешнему ∠T =∠X; проекции сторон XT и XO пропорциональны сторонам AB и AC)
Параллелограмм OXTY составлен из двух треугольников, подобных ABC => угол между его диагоналями, то есть между линией центров XY и AO не зависит от выбора точки D.
Общая хорда AH перпендикулярна линии центров => угол хорды AH и положение точки G не зависят от выбора точки D.
Пусть точки D и E совпадают в точке A.
Тогда окружности касаются сторон AB и AC.
∠ABH=∠CAH, ∠ACH=∠BAH => △AHB~△CHA
высоты из H пропорциональны сторонам AB и AС
=> Н лежит на симедиане к основанию BC.
По свойству симедианы BG/GC =(AB/AC)^2