Обчисли сторони і площу прямокутника, якщо його діагональ дорівнює 33√ дм і утворює з меншою стороною кут 60 градусів. більша сторона = менша сторона= площа прямокутника =
Пусть дана прямая a и точка C, не лежащая на этой прямой. Рассмотрим точки A и B, лежащие на прямой a. Точки A,B и C не лежат на одной прямой а значит, существует единственная плоскость α, проходящая через эти точки. Таким образом, существует единственная плоскость α, проходящая через прямую a и точку C.
Докажем, что любая прямая b, пересекающая прямую a и проходящая через точку C, также лежит в плоскости α. Действительно, пусть прямые a и b пересекаются в точке K. Прямая a лежит в плоскости α, тогда точка K на этой прямой также лежит в α. Тогда прямая b проходит через точки K и C, лежащие в плоскости α, а значит, она целиком лежит в этой плоскости, что и требовалось.
Докажем, что любая прямая b, пересекающая прямую a и проходящая через точку C, также лежит в плоскости α. Действительно, пусть прямые a и b пересекаются в точке K. Прямая a лежит в плоскости α, тогда точка K на этой прямой также лежит в α. Тогда прямая b проходит через точки K и C, лежащие в плоскости α, а значит, она целиком лежит в этой плоскости, что и требовалось.
Нам дана прямая а и некоторая точка М, которая не лежит на этой прямой. Нам
нужно доказать, что все прямые, которые проходят через точку М и пересекают
прямую а лежат в некоторой единственной плоскости.
Мы знаем, что в силу 1 теоремы через прямую а и точку М проходит
единственная плоскость, обозначим через. Теперь возьмем произвольную
прямую, которая проходит через точку М и пересекает прямую а, например, в
точке А. Прямая МА лежит в плоскости α, потому что две ее точки М и А, лежат в
этой плоскости. Значит, и вся прямая лежит в плоскости, в силу 2 аксиомы.
Итак, мы взяли произвольную прямую, которая удовлетворяет условиям задачи,
и доказали, что она лежит в плоскости α. Значит, все прямые, проходящие через
точку М и пересекающие прямую а лежат в плоскости α, что и требовалось
доказать
Объяснение: