Через вершину выпуклого n-угольника проходит d = n*(n-3)/2 диагоналей. Доказать это просто: 1) Из каждой вершины выходит n-1 отрезок к остальным n-1 вершине. Но к двум соседним вершинам - это стороны, а не диагонали. Поэтому из каждой вершины выходит n-3 диагонали. Вершин всего n, поэтому получается n*(n-3) диагоналей. 2) Каждая диагональ соединяет две вершины. Если мы провели диагональ АС, то одновременно мы провели диагональ СА. Поэтому количество диагоналей нужно разделить пополам. Получается d = n*(n-3)/2 1) n = 4, d = 4*1/2 = 2 2) n = 5, d = 5*2/2 = 5 3) n = 6, d = 6*3/2 = 9 4) n = 10, d = 10*7/2 = 35
Чертеж во вложении. Пусть точки В и С - это точки касания окружностей одной из сторон угла А. Т.к. две окружности касаются друг друга внешним образом (К - точка касания) и вписаны в угол А, то центры окружностей - точки О и Е - лежат на биссектрисе угла А. Значит, ∠САЕ=30°. По свойству касательной радиус ОВ⊥АС и радиус ЕС⊥АС. Пусть ЕС=х см, тогда ЕК=х см и ОЕ=6+х см. В прямоугольном ∆АОВ АО = 2ОВ=2*6=12 см (гипотенуза и катет в треугольнике с углом в 30°) Прямоугольные ∆АОВ и ∆АЕC подобны по двум углам. Значит,
Доказать это просто:
1) Из каждой вершины выходит n-1 отрезок к остальным n-1 вершине.
Но к двум соседним вершинам - это стороны, а не диагонали.
Поэтому из каждой вершины выходит n-3 диагонали.
Вершин всего n, поэтому получается n*(n-3) диагоналей.
2) Каждая диагональ соединяет две вершины. Если мы провели диагональ АС, то одновременно мы провели диагональ СА.
Поэтому количество диагоналей нужно разделить пополам.
Получается d = n*(n-3)/2
1) n = 4, d = 4*1/2 = 2
2) n = 5, d = 5*2/2 = 5
3) n = 6, d = 6*3/2 = 9
4) n = 10, d = 10*7/2 = 35
Пусть точки В и С - это точки касания окружностей одной из сторон угла А.
Т.к. две окружности касаются друг друга внешним образом (К - точка касания) и вписаны в угол А, то центры окружностей - точки О и Е - лежат на биссектрисе угла А.
Значит, ∠САЕ=30°.
По свойству касательной радиус ОВ⊥АС и радиус ЕС⊥АС.
Пусть ЕС=х см, тогда ЕК=х см и ОЕ=6+х см.
В прямоугольном ∆АОВ АО = 2ОВ=2*6=12 см (гипотенуза и катет в треугольнике с углом в 30°)
Прямоугольные ∆АОВ и ∆АЕC подобны по двум углам.
Значит,
ответ: 18 см.