2. ВС и ВА, СА и СВ, АС и АВ - касательные к окружности.
По свойству касательных (если из некотрой точки S проведены две касательные a и b к окружности, то отрезки касательных от точки S до точек касания А и В равны) BM=BD, КС=CM, AK=AD
Прямая BC имеет вид y=bx+c Составим систему уравнений:
Прямая BC описывается уравнением y=-0,2x+8,8 Прямая AD || BC, значит коэффициент b у них одинаковый, отличается только коэффициент с. Можем составить уравнение прямой, проходящей через точку A, параллельную BC y=bx+c 2=-0,2*2+c c=2,4 y=-0,2x+2,4
Проверка:
Прямая AB имеет вид y=bx+c Составим систему уравнений:
Прямая AB описывается уравнением y=3x-4 Прямая CD || AB, значит коэффициент b у них одинаковый, отличается только коэффициент с. Можем составить уравнение прямой, проходящей через точку С, параллельную АВ y=bx+c 10=-6*3+c c=28 y=3x+28
Координаты точки D: -0,2x+2,4=3x+28 3,2x=-25,6 x=-8
y=3*(-8)+28=4
D(-8;4)
По точкам можно построить параллелограмм ABCD и убедиться в правильности решения
1. АВ пересекает Окр(O;r) = D
2. ВС и ВА, СА и СВ, АС и АВ - касательные к окружности.
По свойству касательных (если из некотрой точки S проведены две касательные a и b к окружности, то отрезки касательных от точки S до точек касания А и В равны) BM=BD, КС=CM, AK=AD
2. Катет СВ=СМ+ВМ=4+8=12
3. Выразим отрезки касательных АК и АD через х.
Катет АС=КС+х, КС=4+х гипотенуза АВ=ВD+х, АВ=8+х
4. По теореме Пифагора:
АВ² = АС² + СВ²
(8+х)² = (4+х)² + 12²
64+16х + х² = 16 + 8х + х² + 144
16х + х² - 8х - х² = 16 + 144 - 64
8х = 96
х = 12
Следовательно, АК=12
ответ: АК=12
Составим систему уравнений:
Прямая BC описывается уравнением
y=-0,2x+8,8
Прямая AD || BC, значит коэффициент b у них одинаковый, отличается только коэффициент с. Можем составить уравнение прямой, проходящей через точку A, параллельную BC
y=bx+c
2=-0,2*2+c
c=2,4
y=-0,2x+2,4
Проверка:
Прямая AB имеет вид y=bx+c
Составим систему уравнений:
Прямая AB описывается уравнением
y=3x-4
Прямая CD || AB, значит коэффициент b у них одинаковый, отличается только коэффициент с. Можем составить уравнение прямой, проходящей через точку С, параллельную АВ
y=bx+c
10=-6*3+c
c=28
y=3x+28
Координаты точки D:
-0,2x+2,4=3x+28
3,2x=-25,6
x=-8
y=3*(-8)+28=4
D(-8;4)
По точкам можно построить параллелограмм ABCD и убедиться в правильности решения