Образующая конуса равна 20см,радиус основания равен 16см.Найдите радиус шара,вписанного в этот конус, и длину линии, по которой поверхность шара касается боковой поверхности конуса
Пусть ABCD - равнобедренная трапеция, E, F, K, L - середины сторон трапеции, тогда EK=15 см - средняя линия трапеции, FL=6 см - высота и O=FL∩EK - точка пересечения диагоналей четырехугольника EFKL. Так как диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то полученный четырехугольник - параллелограмм (по признаку параллелограмма). А так как ЕК║AD и EK║BC (как средняя линия) и высота FL⊥AD и FL⊥BC, то FL⊥EK, значит диагонали параллелограмма пересекаются под прямым углом, поэтому параллелограмм EFKL - ромб (признак ромба). Площадь ромба можно найти по формуле: S=1/2*d1*d2, где d1 и d2 - диагонали ромба. S=1/2*6*15=45 (см²). ответ: 45 см².
Пусть HPE - прямоугольный треугольник с катетами HP и HE, гипотенузой PE. LE - биссектриса угла E
В прямоугольном треугольнике LHE: LH и HE - катеты, LE - гипотенуза. По условию гипотенуза LE в 2 раза больше катета LH ⇒ угол LEH= 30° т.к. катет, противолежащий углу 30°, равен половине гипотенузы.
Угол PEL равен 30°, т.к. биссектриса LE делит угол PEH пополам ⇒ ⇒ угол PEH = 30 + 30 = 60° ⇒ угол EPH = 180 - 90 - 60 = 30° ⇒ треугольник PLE - равнобедренный с основанием PE, углами при основании равными 30° каждый ⇒ PL = LE как боковые стороны равнобедренного треугольника.
Пусть LE = Х, тогда PL = Х LH = X / 2 HP = X + 8 (по условию) HP = PL + LH = X + X/2
x + x/2 = x + 8 x - x + x/2 = 8 x/2 = 8 x = 8 * 2 x = 16
Так как диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то полученный четырехугольник - параллелограмм (по признаку параллелограмма). А так как ЕК║AD и EK║BC (как средняя линия) и высота FL⊥AD и FL⊥BC, то FL⊥EK, значит диагонали параллелограмма пересекаются под прямым углом, поэтому параллелограмм EFKL - ромб (признак ромба).
Площадь ромба можно найти по формуле:
S=1/2*d1*d2, где d1 и d2 - диагонали ромба.
S=1/2*6*15=45 (см²).
ответ: 45 см².
В прямоугольном треугольнике LHE: LH и HE - катеты, LE - гипотенуза.
По условию гипотенуза LE в 2 раза больше катета LH ⇒ угол LEH= 30° т.к. катет, противолежащий углу 30°, равен половине гипотенузы.
Угол PEL равен 30°, т.к. биссектриса LE делит угол PEH пополам ⇒
⇒ угол PEH = 30 + 30 = 60° ⇒ угол EPH = 180 - 90 - 60 = 30° ⇒ треугольник PLE - равнобедренный с основанием PE, углами при основании равными 30° каждый ⇒ PL = LE как боковые стороны равнобедренного треугольника.
Пусть LE = Х, тогда
PL = Х
LH = X / 2
HP = X + 8 (по условию)
HP = PL + LH = X + X/2
x + x/2 = x + 8
x - x + x/2 = 8
x/2 = 8
x = 8 * 2
x = 16
LE = 16 (cм)
HP = 16 + 8 = 24 (см)
ответ: 24 cм