1). Продлим боковые стороны трапеции: они пересекутся под углом 90 (по теореме о сумме углов в треугольнике АКD: 180 - (67 + 23) = 90) = угол К. 2). Треугольники АKD и BKC прямоугольные, а КЕ и KF - медианы в них => в прямоугольном треугольнике медиана равна половине основанию треугольника, на которое опущена медиана => KF = 1/2AD = 18см (основание AD = 36см поделено пополам данной медианой), а КЕ = 1/2BC = 12 см (основание ВС = 24см поделено пополам данной медианой). 3). EF = KF - KE = 18 - 12 = 6см. ответ: 6см.
2) Дан треугольник с вершинами A(0;-1;-1), B(2;0;-3), D(-5;-5;3). Площадь треугольника равна половине векторного произведения двух векторов, выходящих из одной точки. Вектор АВ (2; 1; -2). Вектор АС (-5; -4; 4). Векторное произведение a × b = = {aybz - azby; azbx - axbz; axby - aybx}= = ((4-8);(10-8); (-8-(-5))) = (-4; 2; -3). Модуль ахв = √((-4)²+2²+(-3)²) = √(16+4+9) = √29 ≈5,3851648. Площадь равна (а*в)/2 = 5,385165/2 = 2,6925825.
Условие перпендикулярности векторов: Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Эти векторы будут перпендикулярны, если выражение xaxb + yayb + zazb= 0. AB(2;1;-2). СД(-2;2;-1). 2*(-2)+1*2+(-2)*(-1) = -4+2+2 = 0. Но длина высоты равна удвоенной площади треугольника, делённой на сторону. Для этого находим длину стороны АВ: АВ = √(2²+1²+(-2)²) = √(4+1+4) = √9 = 3. СД = 2S/AB = 2*2,6925825/3 = 1,7950549.
2). Треугольники АKD и BKC прямоугольные, а КЕ и KF - медианы в них => в прямоугольном треугольнике медиана равна половине основанию треугольника, на которое опущена медиана => KF = 1/2AD = 18см (основание AD = 36см поделено пополам данной медианой), а КЕ = 1/2BC = 12 см (основание ВС = 24см поделено пополам данной медианой).
3). EF = KF - KE = 18 - 12 = 6см.
ответ: 6см.
Площадь треугольника равна половине векторного произведения двух векторов, выходящих из одной точки.
Вектор АВ (2; 1; -2).
Вектор АС (-5; -4; 4).
Векторное произведение a × b =
= {aybz - azby; azbx - axbz; axby - aybx}=
= ((4-8);(10-8); (-8-(-5))) = (-4; 2; -3).
Модуль ахв = √((-4)²+2²+(-3)²) = √(16+4+9) = √29 ≈5,3851648.
Площадь равна (а*в)/2 = 5,385165/2 = 2,6925825.
Условие перпендикулярности векторов:
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.
Эти векторы будут перпендикулярны, если выражение
xaxb + yayb + zazb= 0.
AB(2;1;-2).
СД(-2;2;-1). 2*(-2)+1*2+(-2)*(-1) = -4+2+2 = 0.
Но длина высоты равна удвоенной площади треугольника, делённой на сторону.
Для этого находим длину стороны АВ:
АВ = √(2²+1²+(-2)²) = √(4+1+4) = √9 = 3.
СД = 2S/AB = 2*2,6925825/3 = 1,7950549.