Рисуешь ромб с диагональю и к любой из имеющихся четвертушек применяем теорему Пифагора - отсюда получаем, что сторона ромба равна 5 = V[(6/2)^2 + (8/2)^2] Формула для объема любой (в т.ч. и наклонной) призмы: V = S∙h, где h - расстояние между основаниями призмы. Т.к. боковые ребра наклонены к плоскости под углом 60, то расстояние меджу основаниями призмы равно a∙sin(60|) = a∙V3/2 Площадь равностороннего треугольника: S = (a^2)∙V3/4 V = S∙h = a∙V3/2∙(a^2)∙V3/4 = 3a^3/8. a=5, => V = 375/8 = 46,875
Рисуешь ромб с диагональю и к любой из имеющихся четвертушек применяем теорему Пифагора - отсюда получаем, что сторона ромба равна 5 = V[(6/2)^2 + (8/2)^2]
Формула для объема любой (в т.ч. и наклонной) призмы: V = S∙h, где h - расстояние между основаниями призмы.
Т.к. боковые ребра наклонены к плоскости под углом 60, то расстояние меджу основаниями призмы равно a∙sin(60|) = a∙V3/2
Площадь равностороннего треугольника: S = (a^2)∙V3/4
V = S∙h = a∙V3/2∙(a^2)∙V3/4 = 3a^3/8. a=5, => V = 375/8 = 46,875
b1e= 6√2 там ведь квадрат и по т.пифагора
a1e= сложнее
угол равен 120, равнобедренный треугольник стороны 6
180 - 120 = 60, уже легче, ибо 60\2 = 30, это стороны при основании
сейчас я рассматриваю просто а1е1
получается что треугольник равнобедренный со сторонами 6 и 30 градусов у основания
половина основания находит через пифагора проведя высоту к основанию, половина а1е1 =6√3, значит все а1е1= 12√3
теперь перейдем к 3D
а1е1 - катет, е1е - тоже катет, а а1е - гипотенуза
а1е1 мы нашли = 12√3
е1е = 6, т.к. все отрезки равны в призме по условию
ну и по пифагору
а1е1^2 = 144*3 + 36 = 468
а1е1=√468
хм, отмет странный какой-то) может где ошибся, но не должен был