Для доказательства равенства отрезков следует доказать равенство треугольников, образованных указанными отрезками, высотой равнобедренного треугольника,которая как раз соединяет вершину равнобедренного треугольника и середину основания, и сторонами равносторонних треугольников, построенных на сторонах равнобедренного треугольника. Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.
АС=10 ВС=11 АВ=17
Объяснение:
ВНперпендикулярен АС
ТреугольникВНС- равнобедр, т.к. уголС=углуНВС=50°
ВН=НС
пумть:
ВН=х
АС=10
АН=10-х
tg30°=BH/AH=x/10-x
x(10+tg30°)=tg30°
x=tg30°/10+tg30°=1/корень3/10+1/корень3=1/10+корень3
ВН=1/10+корень3=СН
sin50°=BH/BC(0.8рад)
BC=BH/sin50°=1/10+корень3 : 8/10=5/40+4корень3(примерно 0,11)
ВС=11
sin 30°=BH/AB
AB=BH/sin30°=1/10+корень3 : 1/2= 2/10+корень3(примерно 0,17)
АВ=17
наименьшая сторона АС
(чертёж на быструю руку)
На счёт этой задачи не уверена правильный ли ответ. Было бы лучше есть место 50° было 45°.
Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.