очень
1) Площадь треугольника на 66 см2 больше площади подобного треугольника. Периметр меньшего треугольника относится к периметру большего треугольника как 5:6. Определи площадь меньшего из подобных треугольников.
ответ: S= ... см2.
2) Дано, что DB — биссектриса угла CBA. DA⊥BAиEC⊥CB. Найди CB, если DA= 6 см ,BA=8 см, EC= 3,6 см.
Сначала докажем подобие треугольников. (В каждое окошечко впиши одну латинскую букву или число.)
∢ ... =∢C= ... °
∢C ... E=∢D ... A,т.к.BE− биссектриса}⇒ΔDBA∼ΔEBC,по двум углам (по первому признаку подобия треугольников).
CB= ... см.
Начертим острые углы произвольной величины и обозначим их α и β, соблюдая условие α < β .
Начертим окружность с центром О. От вершин О1 и О2 данных углов как из центра тем же радиусом отметим т. А и В на сторонах угла β, точки С и Т на сторонах угла α. Циркулем измерим дугу АВ и два раза отложим её на первой окружности. Угол СОВ=2β
По общепринятому проведем биссектрисы О1k угла β и О2m угла α. Дугу Вk, равную половине угла β, отложим от т.В на первой окружности (прибавим к уже построенному углу СОВ).
Отложим на той же окружности дугу Сm, равную половине угла α, от т.С в пределах угла СОА. Получившийся угол mОk равен требуемому по условию .2,5 β - 0,5 α (на рисунке он окрашен голубым цветом)
Начертим острые углы произвольной величины и обозначим их α и β, соблюдая условие α < β .
Начертим окружность с центром О. От вершин О1 и О2 данных углов как из центра тем же радиусом отметим т. А и В на сторонах угла β, точки С и Т на сторонах угла α. Циркулем измерим дугу АВ и два раза отложим её на первой окружности. Угол СОВ=2β
По общепринятому проведем биссектрисы О1k угла β и О2m угла α. Дугу Вk, равную половине угла β, отложим от т.В на первой окружности (прибавим к уже построенному углу СОВ).
Отложим на той же окружности дугу Сm, равную половине угла α, от т.С в пределах угла СОА. Получившийся угол mОk равен требуемому по условию .2,5 β - 0,5 α (на рисунке он окрашен голубым цветом)