ОЧЕНЬ
1. Плоскость пересекает рёбра AD, DB, ВС и АС тетраэдра DABC в точках M, N, К и F соответственно. Известно, что AM : MD = 2 : 5, DN : NB = 3 : 4, BK : KC = 5 : 3. Найдите отношение AF : FC.
2. Найдите расстояние между серединами рёбер SA и ВС ортоцентрического тетраэдра SABC, если = 10 см, BC = 24 см.
3. Найдите медианы равногранного тэтраэдра SABC, если
АВ = 5 см, ВС = 6 см, СА = КОРЕНЬ 37 см.
Объяснение:
а) Пусть СХ=х , тогда ХД=7-х.
Произведение отрезков одной хорды равно произведению отрезков другой хорды ⇒
СХ*ХД=АХ*ХВ,
х*(7-х)=2*6 , 7х-х²=12 ,
х²-7х+12=0, D=49-48=1>0 ,
По т. Виета х₁+ х₂=7
х₁* х₂=12 ⇒ х₁=4, х₂=3 .
Если СХ=4 , тогда ХД=7-4=3.
Если СХ=3 , тогда ХД=7-3=4.
б) ∪ АД=80°, ∪ СВ=48°.∠АХС=180°-∠АХД. Найдем угол ∠АХД по теореме : "Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами " ⇒
∠АХД=(48°+80°):2=64°.
∠АХС=180°-64°=116°.
номер 15
дано: угол ТЕR = 75 градусов
ER - бисектриса
ET = FR = EF
75+75=150 градусов - угол E
E=R, T=F
угол R = 150 градусов
360 - (150+150) = 60 градусов
60:2=30
угол T=30 градусов
угол F=30 градусов
номер 16 (тут я не знаю до конца, попробуй загуглить)
угол О = 115 градусов (и с одной стороны угла, и с другой так как углы вертикальны)
угол N=115 градусов (так же и с одной строны угла и с другой так как они тоже вертикальны)
угол E = угол M
номер 10
назовем среднюю точку - O
дано: угол NOM = 120 градусов
EN=FM
из-за вертикальности углов можно сказать, что угол EOF = 120 градусов
угол OEN= 90 градусов
угол MFO= 90 градусов
180-120=60 градусов : 2 = 30.
углы ONM, OMN= по 30 градусов.
угол N= 60, угол M= 60
180-(90+30)= 60 градусов.
углы EON и FOM = по 60 градусов на каждый угол.
180-120= 60 градусов, значит:
60 : 2 = 30.
Угол OEF = 30 градусов.
Угол OFE = 30 градусов.
Угол E = 90 + 30 = 120 градусов.
Угол F = тоже 120 градусов.