Очень надо! Треугольник АВС задан координатами своих вершин А(1;4) В(-1;2) С(2;-1).
1. Напишите уравнение медианы СD, серединного перпендикуляра к АС и биссектрисы BK.
2. Найдите длину отрезка серединного перпендикуляра, заключённого внутри треугольника.
3. Напишите уравнение окружности с центром в точке О(5;-3), касающегося прямой АВ.
Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на отрезки, один из которых равен полусумме оснований, другой - их полуразности.
1) (15+9):2=12 см
2)(15-9):2=3 см
----------
Действительно, треугольники, которые отсекают две высоты равнобедренной трапеции, равны (см. рисунок).
Отсюда АН=(АD-BC):2
Проведем из С прямую параллельно диагонали , ВD до пересечения с продолжением АD в точке Е. DE║BC⇒CEDВ параллелограмм, DE=BC
АЕ=АD+BC
Треугольник АСЕ равнобедренный, его высота СК - медиана⇒
АК=АЕ:2, как и НD=АК=( АD+BC):2
----------
Рисунок второго приложения проще и не нуждается в особых комментариях.
Объяснение:
2. Соединить точки пересечения окружности со сторонами угла.
3. Разделить пополам полученный отрезок для построения биссектрисы. Для этого провести две окружности с центрами в этих точках и радиусом, большим, чем длина соединяющего их отрезка. 2 точки пересечения этих окружностей между собой соединить и провести через них биссектрисы.
4. Точка пересечения получившейся биссектрисы и окружности из 1) пункта и есть наша искомая точка.