Дано векторы а {2;-3} и b {-1;5}. Найдите координаты векторов : а) вектор m = вектор а + b; б) вектор n =4вектор а ; в) вектор p = 4 вектор а - 3 вектор b.
Для наглядности решения нужно начертить квадрат ABCD, провести диагональ АС, затем разделить все стороны квадрата пополам, соединить их между собой; получаем некий четырехугольник 1234 ( точка 1 - середина стороны AB, точка 2 - середина BC и тд. Решение. 1. Находим, чему равна сторона квадрата: сумма квадратов катетов равна квадрату гипотенузы. Сторона квадрата - катет равна а. 2а² =36; а² = 18; а= 3√ 2; 2. Рассмотрим прямоугольный Δ 1В2; его катеты 1В и В2 равны половине стороны квадрата и равны 3/2 √ 2; тогда гипотенуза, она же сторона вписанного четырехугольника, периметр которого нужно найти равна: √ [ (3/2√ 2)² + (3/2√ 2)²] = √9 = 3. Нетрудно увидеть, что остальные стороны вписанного четырехугольника тоже равны 3; тогда периметр его P= 4x3=12(см). ответ: периметр четырехугольника равен 12см
Объяснение:
1. Сумма углов правильного n-угольника равна 180 • n - 360 или 180 • (n-2). А теперь считаем:
180 • 14 - 360 = 2160 или 180 • (14 - 2) = 2160
2.Площадь параллелограмма равна: сторона * высоту, проведенную к ней. Следовательно: 84 \ 12 = 7 (см)
3.Обозначим треугольник как АВС где АС основание, ВК - высота. зная что АВ = 15, а ВК = 9 найдём АК по теореме пифагора:
АК в квадрате = АВ в квадрате-ВКв квадрате , АК в квадрате = 225 - 81
АК=корень из 144 , АК = 12.
так как треуг равнобедренный то АВ = СВ = 15 . Найдём КС по теореме пифагора:
КС в квадрате = ВС в кв-ВК в кв , КС в кв = 225-81=144 в корне
КС = 12, значит АС = АК+КС
АС=24 , найдём площадь по формуле
ответ:108 см кв
4.Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам.
Пусть ВО = х, тогда BD = 2x, AC = 2x +28, AO = x + 14
ΔABO: ∠O = 90°
По теореме Пифагора:
AB² = AO² + OB²
26² = (x + 14)² + x²
x² + 28x + 196 + x² - 676 = 0
2x² + 28x - 480 = 0
x² + 14x - 240 = 0
D/4 = 7² + 240 = 49 + 240 = 289 = 17²
x = -7 + 17 = 10 или x = -7 -17 = -24 не подходит по смыслу задачи
BD = 20 см
AC = 20 + 28 = 48 см
Sabcd = 1/2 ·BD · AC = 1/2 · 20 · 48 = 480 (см²)
5.фото
а 2 вариант на подобия этого подставить под формулы